WWW.DOC.KNIGI-X.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Различные документы
 

Pages:     | 1 || 3 | 4 |   ...   | 9 |

«Клиническая Анестезиология книга первая Дж. Эдвард Морган-мл. Мэгид С. Михаил Перевод с английского под редакцией академика PAMH А. А. Бунятяна, канд. мед. наук ...»

-- [ Страница 2 ] --

Рис. 4-3. Система обеспечения безопасности при снижении давления кислорода: давление в кислородной магистрали определяет подачу газа по сопряженной линии. Степень безопасности системы ограничена. Например, система будет пропускать гипоксическую смесь в следующих случаях: если газовый поток ошибочно формируется с недостаточным содержанием кислорода; при неправильной регулировке вентиля подачи кислорода; при ошибочной подаче в кислородную линию другого газа

- 40 Рис. 4-4. Дозиметр постоянного давления и Рис. 4-5. Характерный профиль ручки кислородного вентиля конического сечения (типа Thorpe) снижает вероятность ошибки при манипуляциях Спирометры и датчики давления в дыхательном контуре (манометры) Дыхательный объем, ритмически подаваемый больному из дыхательного контура, измеряется спирометром. Пневмотахограф — это дюзный дозиметр, функционирующий как спирометр. Камера смешения обеспечивает незначительное сопротивление газовому потоку. Снижение давления при преодолении этого сопротивления пропорционально скорости потока и измеряется датчиком градиента давления. Дыхательный объем рассчитывается математически как производное скорости потока. Конденсация паров воды и перепады температуры приводят к ошибкам в показаниях пневмотахографа, что ограничивает его клиническое использование.

Спирометр Райта (Wright), расположенный в экспираторном колене дыхательного шланга перед клапаном выдоха, измеряет выдыхаемый дыхательный объем (рис. 4-6). Поток газа внутри респирометра приводит во вращательное движение крыльчатки или роторы; степень ротации измеряется электронным, фотоэлектрическим или механическим способом.


В современных наркозных аппаратах для измерения минутного объема дыхания и дыхательного объема применяют именно этот принцип. Выдыхаемый дыхательный объем зависит от параметров ИВЛ (установленных анестезиологом), но также изменяется при утечках, разгерметизации или неисправностях в работе респиратора. Спирометр Райта может давать ошибочные значения под воздействием инерции, силы трения и конденсации водяных паров. Кроме того, в измеряемый выдыхаемый дыхательный объем входит объем, "потерянный" в дыхательном контуре за счет сжатия газа и расширения дыхательных шлангов. Длинные шланги с высокой растяжимостью, большая частота дыхания и высокое давление в дыхательных путях — все это значительно увеличивает разницу между объемом смеси, подаваемым в дыхательный контур, и объемом, поступающим в дыхательные пути больного.

Датчики давления в дыхательном контуре (манометры) обычно расположены между направляющими клапанами вдоха и выдоха; точное месторасположение зависит от того, какая модель наркозного аппарата используется. Давление в дыхательном контуре обычно отражает давление в дыхательных путях.

Повышение давления сигнализирует об ухудшении растяжимости легких, повышении дыхательного объема или обструкции в дыхательном контуре. Снижение давления может свидетельствовать об улучшении растяжимости легких, уменьшении дыхательного объема или утечке из контура. Если давление в контуре измеряется рядом с адсорбером углекислого газа, то оно не всегда соответствует давлению в дыхательных путях. Например, пережимание экспираторного колена дыхательного шланга во время выдоха будет препятствовать выходу газовой смеси из легких. Несмотря на возрастание давления в дыхательных путях, установленный рядом с адсорбером манометр будет показывать ноль, потому что направляющий клапан вдоха препятствует передаче давления.

Некоторые наркозные аппараты оборудованы дисплеями, графически отражающими давление в дыхательном контуре (рис. 4-7). Пиковое давление вдоха — максимальное давление в контуре в фазу вдоха, оно отражает динамическую растяжимость. Давление плато — это давление, измеренное во время инспираторной паузы (фаза дыхательного цикла, во время которой газоток отсутствует) и отражающее статическую растяжимость. При ИВЛ в отсутствие заболеваний легких пиковое давление вдоха равно давлению плато или слегка превышает его. Параллельное повышение пикового давления вдоха и давления плато происходит при увеличении дыхательного объема или при снижении растяжимости легких.

- 41 Повышение пикового давления вдоха с незначительным изменением давления плато свидетельствует об увеличении объемной скорости инспираторного потока или увеличении сопротивления дыхательных путей (табл. 4-1). Таким образом, по форме кривой давления в дыхательном контуре можно судить о состоянии дыхательных путей.

Рис. 4-6. Спирометр Райта. (Из: Moshin W. W. Automatic Ventilation of the Lungs, 2nd ed. Blackwell,

1969. Воспроизведено с разрешения.) Рис. 4-7. Давление в дыхательных путях (Рдп) в разные фазы дыхательного цикла. А. У здоровых людей пиковое давление вдоха равно давлению плато или слегка превышает его. Б. Параллельное повышение пикового давления вдоха и давления плато (разница остается практически неизменной) возникает при увеличении дыхательного объема или при снижении растяжимости легких. В. Повышение пикового давления вдоха с незначительным изменением давления плато свидетельствует об увеличении объемной скорости инспираторного потока или увеличении сопротивления дыхательных путей Закупорку дыхательных путей мокротой или перегибание эндотрахеальной трубки можно легко устранить с помощью катетера для отсасывания. Гибкий фибробронхоскоп позволяет установить точный диагноз.

Испарители

- 42 Летучие анестетики (галотан, изофлюран, эн-флюран, десфлюран, севофлюран) перед поступлением к больному должны перейти из жидкого состояния в газообразное, т. е. испариться. При данной температуре молекулы летучего вещества в закрытой емкости распределяются между жидкой и газообразной фазами.

Молекулы газа бомбардируют стенки емкости, создавая давление насыщенного пара (насыщенным паром называют газ, находящийся в равновесии с жидкой фазой того же вещества.— Примеч. пер.). Чем выше температура, тем больше тенденция перехода молекул из жидкой фазы в газообразную и тем выше давление насыщенного пара. Испарение требует затрат энергии (теплота испарения), что обеспечивается за счет потери тепла жидкостью. По мере испарения температура жидкости снижается, а давление насыщенного пара, соответственно, уменьшается — если только тепло не поступает извне.

В испарителе есть камера, в которой газ-носитель насыщается парами летучего анестетика.

ТАБЛИЦА 4-1. Причины увеличения пикового давления вдоха Параллельное повышение пикового давления вдоха и давления плато Увеличение дыхательного объема Снижение растяжимости легких Отек легких Положение Тренделенбурга Плевральный выпот Асцит Тампонирование брюшной полости Инсуффляция газа в брюшную полость Напряженный пневмоторакс Эндобронхиальная интубация Повышенное пиковое давление вдоха при нормальном давлении плато Увеличение скорости инспираторного потока Увеличение сопротивления дыхательных путей Перегибание эндотрахеальной трубки Бронхоспазм Закупорка мокротой Аспирация инородного тела Сдавление дыхательных путей "Грыжа" манжетки эндотрахеальной трубки Хотя существует много моделей испарителей, в настоящей главе представлены лишь три наиболее важных.

В универсальном медном испарителе газ-носитель (кислород), проходящий через анестетик, поступает через дозиметр типа Thorpe (рис. 4-8). Контрольный клапан испарителя отделяет контур испарителя от дозиметров подачи кислорода и закиси азота в дыхательный контур. Если испаритель не используется, то для предотвращения утечки или обратного потека газа контрольный клапан должен быть закрыт.

В конструкции использована медь из-за сравнительно высокой удельной теплоемкости (теплоемкость — количество тепла, необходимое для подъема температуры 1 г вещества на 1 0C) и теплопроводности (теплопроводность — скорость проведения тепла через массу вещества), что способствует поддержанию постоянной температуры в испарителе.

Все газы, попадающие в испаритель, проходят через жидкий анестетик (барботируют) и насыщаются его парами; 1 мл жидкого анестетика соответствует приблизительно 200 мл его паров. Поскольку у ингаляционных анестетиков давление насыщенного пара больше, чем необходимое для анестезии парциальное давление, то перед поступлением к больному насыщение анестетиком газа, покидающего медный испаритель, следует понизить.

Например, давление паров галотана при 20 0C составляет 243 мм рт. ст.; значит, давление насыщенного пара галотана, покидающего медный испаритель при давлении в 1 атм, составит 243/760, или 32 %.





Если в испаритель поступает 100 мл кислорода, то выходить будет приблизительно 150 мл газа, при этом почти 1/3 составят пары галотана. Парциальное давление галотана, достаточное для анестезии, при давлении в 1 атм составляет всего 7 мм рт. ст., или менее 1 % (7/760). Чтобы достичь 1 % концентрации галотана, 50 мл его паров и 100 мл газа-носителя, покидающих медный испаритель, должны быть дополнены еще 4850 мл газа (5000 - 150 = 4850). Как следует из этого примера, каждые 100 мл кислорода, прошедшие через испаритель с галотаном, несут 1 % галотана, если общий поток газа в дыхательном контуре составляет 5 л/мин. Таким образом, в конечном счете концентрацию анестетика определяет поток газа-носителя, поэтому медный испаритель относится к испарителям измеряемого потока.

Давление насыщенных паров изофлюрана и галотана практически одинаково, поэтому на изофлюран распространяются те же взаимоотношения между потоком газа-носителя через медный испаритель, общим потоком газа и концентрацией анестетика.

Давление насыщенного пара энфлюрана при 20 0C составляет 175 мм рт. ст. Насыщенный газ-носитель, покидающий медный испаритель, заполненный энфлюраном, при давлении на уровне моря будет иметь концентрацию 175/760, или 23 %. Иными словами, 100 мл кислорода несут 30 мл паров энфлюрана (30/130 = 23 %).

Значит, каждые 100 мл кислорода, проходя через медный испаритель с энфлюраном, несут 1 % энфлюрана, если общий поток в дыхательном контуре составляет 3 л/мин (30/3000 = 1 %).

Таким образом, количество паров, покидающих медный испаритель (выход паров), зависит от давления насыщенного пара летучего анестетика (Днп), скорости потока газа-носителя (Пг) через испаритель и барометрического давления (БД):

Выход паров анестетика = Пг х Днп/(БД - Днп).

Проведем расчет на примере энфлюрана:

Выход паров энфлюрана = 100 мл/мин х 175 мм рт. ст.

(760 мм рт. ст. - 175 мм рт. ст.) = 30 мл/мин.

Разделив полученное количество паров анестетика на общий поток газа в дыхательном контуре, получим процентное выражение (т. е.

фракционную концентрацию):

Фракционная концентрация анестетика = 30 мл/мин (Выход паров анестетика) 3000 мл/мин (Общий поток газа) = 1 %.

Если общий поток газа внезапно снижается (например, иссякла закись азота в баллоне), концентрация летучего анестетика может достигать опасного уровня.

- 43 Рис. 4-8. Медный испаритель. (Из: Hill D. W. Physics Applied to Anaesthesia, 4th ed. Butterworths, 1980.

Воспроизведено с разрешения.) Передозировка анестетика может иметь очень серьезные последствия, поэтому чрезвычайно важно точно дозировать его концентрацию во вдыхаемой смеси. Современные специализированные испарители (т. е.

предназначенные только для одного анестетика) способны обеспечить постоянную концентрацию анестетика независимо от температуры или потока через испаритель. Поворот градуированной рукоятки управления против часовой стрелки (или по часовой в некоторых старых моделях) до необходимого значения делит общий поток на поток газа-носителя, который проходит в камере испарителя над поверхностью жидкого анестетика и насыщается парами, и обходной поток (шунт-поток), который покидает испаритель неизмененным (рис. 4-9). Часть поступающего в испаритель газа никогда не взаимодействует с жидкой фазой анестетика, поэтому специализированные испарители известны также как испарители с варьирующимся обходным потоком.

Термокомпенсация достигается применением биметаллических полос. Изменение скорости потока даже в широком диапазоне не влияет на концентрацию анестетика, потому что с жидким анестетиком взаимодействует все та же часть газа-носителя. Напротив, изменение состава носителя, например переход со 100 % кислорода на смесь 30 % кислорода и 70 % закиси азота, может вызвать преходящее снижение фракционной концентрации анестетика в связи с более высокой растворимостью закиси азота в жидких анестетиках.

Следует избегать заполнения специализированного испарителя "чужим"анестетиком. Например, случайное заполнение энфлюранового испарителя галотаном может привести к передозировке. Во-первых, давление насыщенного пара галотана выше (243 мм рт. ст. против 175 мм рт. ст. у энфлюрана), что вызовет увеличение количества паров анестетика на 40 %. Во-вторых, галотан мощнее энфлюрана более чем в 2 раза (см. гл. 7). И наоборот, при заполнении энфлюраном галота-нового испарителя анестезия будет слишком поверхностной.

Чрезмерное отклонение испарителя от вертикального положения может вызвать попадание анестетика в обходной канал, что приводит к опасному повышению концентрации анестетика. Колебания давления при ИВЛ вызывают обратный га-зоток через испаритель, непредсказуемо изменяя концентрацию анестетика в смеси. Этот феномен, получивший название "эффекта накачки", более выражен при низких скоростях потока газа. В новых, усовершенствованных моделях испарителей риск развития подобных осложнений снижен: например, в них автоматически компенсируется изменение внешнего давления (при изменении высоты над уровнем моря).

Давление насыщенных паров десфлюрана настолько высоко, что на уровне моря он закипает при комнатной температуре (см. табл. 7-3). Подобная высокая испаряемость в сочетании с мощностью, которая в 5 раз меньше мощности других анестетиков, создает уникальные в своем роде затруднения. Во-первых, процесс испарения, необходимый для обеспечения общей анестезии, сопровождается столь значительным охлаждением, что испарители обычной конструкции оказываются не в состоянии поддерживать постоянную температуру. Во-вторых, поскольку испарение протекает очень активно, требуется колоссальный поток свежего газа для обеспечения клинически приемлемых концентраций анестетика. Эти проблемы можно решить, применяя специальный десфлюрановый испаритель — Тес 6. Десфлюран находится в резервуаре (так называемом десфлюрановом отстойнике), где с помощью электрообогревателя поддерживается температура

- 44 C. При этом десфлюран испаряется, давление его насыщенного пара составляет 2 атм. В отличие от остальных испарителей с варьирующимся обходным потоком, через десфлюрановый резервуар поток свежего газа-носителя не проходит. Пары десфлюрана покидают резервуар и до выхода из испарителя смешиваются со свежей газовой смесью. Количество паров десфлюрана, покидающих резервуар, регулируется поворотом диска управления и скоростью потока свежего газа. Хотя испаритель Тес 6 поддерживает постоянную концентрацию десфлюрана независимо от уровня потока свежего газа, он не способен автоматически компенсировать снижение внешнего давления. Снижение внешнего давления не влияет на концентрацию анестетика, но снижает его парциальное давление. Таким образом, в местах, расположенных высоко над уровнем моря, анестезиолог должен вручную переустановить концентрацию на диске управления для достижения необходимого парциального давления паров.

Испарители с варьирующимся обходным потоком устанавливаются вне реверсивного контура, между дозиметрами и выходным патрубком подачи свежей смеси,— чтобы уменьшить риск резкого увеличения концентрации анестетика при экстренной подаче кислорода. Блокираторы и ограничители исключают одновременное использование более чем одного испарителя. В наркозных аппаратах старых конструкций, лишенных этих защитных приспособлений, испарители следует располагать в определенном порядке с целью снижения риска перекрестного загрязнения при одновременном включении двух из них. Исходя из давления насыщенного пара и мощности анестетика, рекомендуется следующий порядок расположения испарителей (в направлении от выходного патрубка подачи к дозиметрам): испаритель десфлюрана, метоксифлюрана, энфлюрана, севофлюрана, изо-флюрана, галотана.

Рис. 4-9. Современный испаритель, расположенный вне дыхательного контура. Для каждого ингаляционного анестетика существует свой испаритель Респираторы и тревожная сигнализация при разгерметизации Функция респираторов (аппаратов ИВЛ) — создание градиента давления между проксимальными дыхательными путями и альвеолами. Анестезиологические респираторы являются структурным компонентом наркозного аппарата. Старые респираторы работали как генераторы отрицательного давления вокруг грудной клетки (например, "железные легкие"), в противоположность им современные модели создают положительное давление в верхних дыхательных путях. Дыхательный цикл респиратора состоит из четырех фаз: вдох, период между вдохом и выдохом, выдох, период между выдохом и вдохом. Респираторы классифицируют в зависимости от различных характеристик фаз дыхательного цикла.

Во время вдоха респираторы генерируют дыхательный объем, подавая поток газа по градиенту давления. На всем протяжении дыхательного цикла вне зависимости от механических свойств легких сохраняется либо постоянное давление (генераторы постоянного давления), либо постоянная скорость потока (генераторы постоянного потока) (рис. 4-10A и 4-10Б). Генераторы переменного давления и потока характеризуются непостоянным давлением и потоком на протяжении одного цикла, но характер их изменений стереотипно повторяется в каждом цикле. Например, респиратор, который генерирует синусоидальный поток, должен быть отнесен к генераторам переменного давления и потока (рис. 4-10B).

Повышение сопротивления дыхательных путей или снижение растяжимости легких будет сопровождаться увеличением пикового давления вдоха, но скорость потока, генерируемая этим типом респиратора, меняться не будет.

Фаза вдоха завершается по достижении установленного времени, давления вдоха или дыхательного

- 45 объема, поэтому респираторы также классифицируют по способу переключения с фазы вдоха на фазу выдоха.

В респираторах с переключением по времени дыхательный объем и пиковое давление Рис. 4-10. Графики давления, объема и потока в зависимости от типа респиратора вдоха варьируются в зависимости от растяжимости легких. Дыхательный объем зависит от заданных установок продолжительности вдоха и скорости ин-спираторного потока (например, респиратор Айр-шельда). В респираторах с переключением по давлению фаза вдоха заканчивается при достижении заданного давления в дыхательных путях. Если утечки в дыхательном контуре существенно снижают пиковое давление, то респиратор этого типа может неопределенно долго оставаться в фазе вдоха. Однако небольшие утечки не вызывают значительного снижения дыхательного объема, так как переключения на выдох не произойдет до достижения заданной величины давления. Поскольку в респираторах с переключением по давлению используется эффект Вентури (т. е.

подсасывается воздух), то увеличение потока достигается ценой снижения фракционной концентрации кислорода во вдыхаемой смеси (например, так происходит в компактных моделях респиратора Bird для лечения перемежающимся положительным давлением в дыхательных путях). В респираторах с переключением по объему продолжительность фазы вдоха и давление в дыхательных путях колеблются в зависимости от достижения заданного объема (параллельно с этим обычно существует ограничение по давлению). Многие анестезиологические респираторы — это респираторы с ограничением по объему, но с переключением по времени (например, респиратор Drager AV-E).

В фазе выдоха при использовании большинства респираторов давление в дыхательных путях снижается до уровня атмосферного. Поэтому поток из легких носит пассивный характер и зависит главным образом от сопротивления дыхательных путей и растяжимости легких. Положительное давление в конце выдоха можно обеспечить, создав препятствие выдоху. Некоторые респираторы старых моделей генерируют отрицательное давление выдоха. В настоящее время отрицательное давление на выдохе практически не используют в связи с риском преждевременного экспираторного закрытия дыхательных путей.

Следующая фаза вдоха обычно начинается после определенного заданного временного интервала (принудительная ИВЛ), но в некоторых аппаратах эта фаза инициируется отрицательным давлением, создаваемым самостоятельным вдохом больного (вспомогательная ИВЛ). Перемежающаяся принудительная ИВЛ дает возможность больному самостоятельно дышать в промежутках между принудительными вдохами. В отличие от вспомогательной или принудительной ИВЛ, при перемежающейся принудительной ИВЛ во время самостоятельного вдоха в дыхательные пути не всегда поступает объем, соответствующий заданному дыхательному объему. При синхронизированной перемежающейся принудительной ИВЛ попытка самостоятельного вдоха запускает принудительный вдох, что предотвращает "борьбу" больного с респиратором.

Между устройством анестезиологических респираторов многих типов существует сходство. Дыхательный объем подается воздуходувным комплексом, состоящим из резиновых мехов и прозрачного пластмассового колпака.

Предпочтительнее использовать поднимающиеся (стоячие) мехи, так как они привлекают внимание персонала, спадаясь при разгерметизации контура (рис. 4-11). В отличие от них опускающиеся (висячие) мехи продолжают наполняться под действием силы тяжести, даже если они не соединены с дыхательным контуром (см. рис. 4-11).

В респираторе мехи выполняют ту же функцию, что дыхательный мешок — в дыхательном контуре. По пневмоприводу респиратора кислород под давлением (см. рис. 4-2) поступает в пространство между внутренней стенкой колпака и наружной стенкой мехов. Нарастающее давление сжимает гофрированные мехи, проталкивая газовую смесь в дыхательный контур. Таким образом, внутри респиратора расположены два отдельных контура,

- 46 разделенных стенками мехов: наружный контур, в котором находится кислород под высоким давлением, приводящий в действие респиратор, и внутренний контур, соединенный с дыхателъным контуром наркозного аппарата.

Расход кислорода, необходимый для работы пневмопривода респиратора, равен, как минимум, минутному объему дыхания. Например, если поток свежего газа (кислорода) составляет 2 л/мин и респиратор подает в дыхательный контур б л смеси в 1 мин, то расход кислорода на работу пневмопривода составит не менее 8 л/мин. Об этом не следует забывать, когда стационарная система газоснабжения по каким-либо причинам выходит из строя и используются кислородные баллоны.

Электронные блоки управления современных анестезиологических респираторов позволяют в широких пределах манипулировать дыхательными объемами, пиковым давлением вдоха, частотой дыхания, инспираторными паузами, соотношением фаз вдоха и выдоха, перемежающимися вдохами, положительным давлением в конце выдоха. Работа этих респираторов невозможна без кислорода под давлением (для пневмопривода дыхательных мехов) и электрообеспечения (часто с батарейным источником питания) для электронного блока управления.

Рис. 4-11. Два типа мехов, применяемых в респираторах наркозных аппаратов. Если утечка превышает поток свежего газа, то поднимающиеся мехи (А) спадаются, тогда как опускающиеся мехи (Б) заполняются и продолжают функционировать. Штриховкой обозначен внешний кислородный контур (пневмопривод), который обеспечивает работу респиратора и закрывает предохранительный клапан во время вдоха. Пневмопривод работает от сжатого кислорода, находящегося под высоким давлением. Незаштрихованный газ в полости мехов — это часть дыхательного контура Тревожная сигнализация — неотъемлемый элемент анестезиологического респиратора. Когда респиратор работает, ни в коем случае нельзя отключать тревожную сигнализацию разгерметизации.

Рассоединение элементов дыхательного контура (разгерметизация) — главная причина анестезиологических осложнений — обнаруживает себя снижением пикового давления в контуре. В респираторе имеются и другие системы тревоги, которые сигнализируют о чрезмерном увеличении давления в дыхательных путях, низком давлении в кислородной магистрали или неспособности респиратора обеспечить заданный МОД.

Когда респиратор работает, то предохранительные клапаны реверсивного контура следует закрыть или функционально вывести из контура.

Анестезиологические респираторы обычно имеют свои собственные предохранительные клапаны, которые остаются закрытыми во время вдоха, что обеспечивает генерацию положительного давления. Когда в фазе выдоха мехи вентилятора заполняются, то давление в контуре возрастает и предохранительные клапаны респиратора открываются. Зали-пание этого клапана приводит к резкому подъему давления в дыхательных путях. И наоборот, если предохранительные клапаны дыхательного контура не полностью закрыты или не отключены функционально, то давление в дыхательных путях может быть недостаточно высоким для обеспечения ИВЛ. Поскольку предохранительные клапаны респиратора во время вдоха закрыты, то к заданному дыхательному объему добавляется поток свежего газа из контура и к больному поступает этот суммарный объем.

Например, если поток свежего газа составляет 6 л/мин, соотношение вдоха и выдоха — 1 : 2, частота дыхания — 10/мин, то к каждому заданному дыхательному объему будет добавляться еще 200 мл:

(6000 мл/мин) х (33 %)/ 10/мин 200 мл/мин.

Таким образом, увеличение потока свежего газа увеличивает МОД. Более того, в фазу вдоха не следует включать экстренную подачу кислорода, так как предохранительный клапан респиратора закрыт и всплеск давления в контуре обязательно будет передаваться на легкие больного.

При утечке в мехах высокое давление из пнев-мопривода передается на дыхательные пути больного, что чревато баротравмой легких. Эту неисправность можно выявить по более высокой, нежели предполагаемая, фракционной концентрации кислорода во вдыхаемой смеси. Неправильное присоединение шлангов респиратора к наркозному аппарату и дыхательному контуру может вызвать гипоксическое повреждение

- 47 головного мозга. Другие неисправности в работе респиратора включают нарушение электроснабжения, обструкцию потока, электромагнитную интерференцию и дисфункцию клапанов.

Система улавливания и отвода отработанных газов Система улавливания и отвода удаляет отработанные медицинские газы, которые сбрасываются из дыхательного контура через предохранительный клапан. Загрязнение среды операционной ингаляционными анестетиками опасно для здоровья персонала (см. гл. 47). Хотя установление безопасных следовых концентраций анестетиков представляет определенные сложности, Национальный институт профессиональной безопасности и охраны здоровья (США) рекомендует ограничить содержание закиси азота в воздухе операционной до 25 ррm1, а галогенированных анестетиков — до 2 ррm (или до 0,5 ррm при сочетании их с закисью азота). Снижение этих следовых концентраций возможно лишь при исправном функционировании системы улавливания и отвода отработанных газов.

Чтобы избежать повышения давления, избыток газа сбрасывается через предохранительный клапан дыхательного контура или респиратора. Оба клапана передающими шлангами (переходниками) соединяются с интерфейсом системы улавливания и отвода (рис. 4-12). Выпускное отверстие системы улавливания и отвода может свободно открываться вне пределов операционной (пассивный отвод), а также присоединяться или к системе кондиционирования воздуха (без возможности рециркуляции), или же к стационарной системе вакуумной разводки (активный отвод). Последний метод самый надежный и самый сложный. Предохранительные клапаны отрицательного и положительного давления предохраняют больного как от воздействия отрицательного давления вакуум-системы, так и от возможного повышения давления при закупорке передающих шлангов. Мешок-резервуар принимает дополнительный поток отработанных газов, если вакуумная система не справляется с повышенной нагрузкой.

Контрольный вакуумный клапан должен быть отрегулирован под эвакуацию не менее чем 10-15л отработанного газа в минуту. Такая скорость является необходимой в периоды поступления потока свежего газа с высокой скоростью (например, во время индукции и пробуждения), а также позволяет снизить риск передачи отрицательного давления на дыхательный контур при низкой скорости потока (во время поддержания анестезии).

pmm, от англ, parts per million — "частей на миллион" — выражение концентрации газа в газовой смеси Увлажнители и распылители (небулизаторы) Относительная влажность — отношение массы воды, представленной в объеме газа (т. е. абсолютной влажности), к максимально возможному количеству воды при данной температуре. Вдыхаемые газы согреваются до температуры тела и насыщаются парами воды в верхних дыхательных путях (100 % относительная влажность = 44 мг Н2О/л газа при 37 0C). При интубации трахеи и высоких скоростях потока свежего газа физиологическая система увлажнения не функционирует и нижние дыхательные пути подвергаются воздействию сухого ( 10 мг Н2О/л) газа комнатной температуры. Пренебрежение увлажнением газа приводит к дегидратации слизистой оболочки нижних дыхательных путей, нарушению функции реснитчатого эпителия, сгущению секрета и даже нарушению вентиляционно-перфузионных соотношений вследствие ателектазирования. Во время вентиляции тепло человеческого тела расходуется на согревание и, что более важно, на увлажнение сухих газов. (Расход тепла на испарение воды составляет 560 калорий/г H2O.) Рис. 4-12. Система улавливания отработанных газов Установка увлажнителя в дыхательный контур сокращает потери влаги и тепла. Простейшие конструкции увлажнителя — конденсатный увлажнитель и тепловлагообменник (рис. 4-13). Это устройство не поставляет дополнительно тепло или влагу, но содержит гигроскопический материал, улавливающий выдыхаемую влагу, которая высвобождается с последующим вдохом. В зависимости от технического решения

- 48 они могут значительно увеличивать "мертвое пространство" (более чем на 60 мл), что у детей приводит к существенной рециркуляции. Более того, повышая сопротивление в дыхательном контуре, эти устройства увеличивают работу дыхания и поэтому не должны использоваться при самостоятельном дыхании. При длительном применении трахеостомическая канюля может закупориваться густым PI обильным секретом.

Некоторые конденсатные увлажнители работают как эффективные фильтры, защищающие дыхательный контур и наркозный аппарат от перекрестного бактериального и вирусного загрязнения. Эти приспособления играют особо важную роль при ИВЛ у больных с легочной инфекцией или иммунодефицитом.

В проточных, или пузырьковых, (барботаж-ных) увлажнителях газ проходит через прохладную или теплую водяную баню. Поскольку повышение температуры увеличивает способность газа удерживать водяные пары, нагреваемые водяные бани с термостатом — наиболее эффективные увлажнители. К осложнениям активного увлажнения относятся термическая травма легких (необходимо постоянно контролировать температуру вдыхаемой смеси), нозокомиальная инфекция, увеличение сопротивления дыхательных путей, а также повышенный риск разгерметизации контура. Тем не менее в случаях, когда нельзя допустить интраоперационной гипотермии, эти увлажнители эффективно обеспечивают необходимую Рис. 4-13. Конденсатный увлажнитель, так называемый "искусственный нос", размещается между эндотрахеаль-ной трубкой и прямоугольным коннектором дыхательного контура. (С разрешения Terumo Corp.) температуру и влажность. Особо ценны активные увлажнители для детской анестезиологии, так как они позволяют предупредить не только гипотермию, но и обструкцию тонких эндотрахеальных трубок вязким секретом. Конечно же, в педиатрической практике следует избегать применения любых приспособлений, увеличивающих "мертвое пространство". В отличие от пассивных увлажнителей, активные не обладают фильтрационной способностью.

Распылители (небулизаторы) разбрызгивают частицы воды в виде аэрозоля (спрея). Размер частиц зависит от способа распыления: струйные распылители высокого давления формируют частицы диаметром 5-30 мкм, тогда как ультразвуковые генерируют частицы размером 1-10 мкм. В струйных распылителях используется эффект Бернулли (подобный эффекту Вентури): водная струя захватывается и разбивается высокоскоростной струей газа. Струйные распылители часто применяются в палатах пробуждения для доставки в дыхательные пути аэрозоля комнатной температуры с высоким содержанием воды. Ультразвуковые распылители столь эффективны, что могут вызвать гипергидратацию. Основная сфера их применения — подача бронходи-лататоров в периферические дыхательные пути и обеспечение дренирования секрета при респираторной терапии.

Кислородные анализаторы Никогда не следует проводить общую анестезию без кислородного анализатора в дыхательном контуре. Концентрация кислорода может быть измерена электрохимическим способом, с помощью парамагнитного анализа или масс-спектрометрии (см. гл. 6). Применяются два типа электрохимических датчиков: гальванический элемент (элемент питания) и полярографический элемент (электрод Кларка).

Оба датчика содержат погруженные в электролитный гель катод и анод, отделенные от пробы газа мембраной, проницаемой для кислорода. Как только кислород попадает на электроды, генерируется ток, сила которого пропорциональна парциальному давлению кислорода в пробе. Гальванический и полярографический датчики различаются материалом, из которого сделаны электроды, и составом электролитного геля. Компоненты гальванического датчика вырабатывают достаточное количество химической энергии, поэтому для его работы не требуется внешнего источника электропитания. Сравнительные характеристики гальванического и полярографического датчиков представлены в табл. 4-2.

Первоначальные затраты на приобретение и эксплуатацию парамагнитных датчиков выше, чем таковые для электрохимических, однако последующие — меньше, поскольку они автоматически калибруются (самонастраиваются) и не нуждаются в расходных материалах. К тому же парамагнитные датчики реагируют на изменение концентрации настолько быстро, что можно определить разницу между концентрацией кислорода во вдыхаемой и в выдыхаемой смеси.

Все кислородные анализаторы снабжены низкопороговой тревожной сигнализацией, которая при включении анализатора автоматически приводится в рабочий режим. Датчики должны располагаться в инспираторном или экспираторном колене дыхательного контура, но только не на линии подачи свежего газа.

В результате потребления кислорода больным парциальное давление кислорода в экспираторном колене будет несколько ниже, чем в инспираторном, особенно при низких скоростях потока свежего газа. Повышенная влажность выдыхаемой смеси существенно не влияет на точность показаний в новых моделях кислородных анализаторов.

- 49 Процедура проверки наркозного аппарата Неисправности в работе наркозного аппарата — распространенная причина тяжелых осложнений в анестезиологии. Стандартная проверка анестезиологического оборудования перед каждым его использованием повышает осведомленность персонала и способствует правильной эксплуатации. Управление по контролю за пищевыми продуктами и лекарственными средствами США разработало стандартную процедуру проверки наркозных аппаратов и дыхательных контуров (табл. 4-3). Эту процедуру можно изменить в зависимости от применяемого оборудования. Хотя нет необходимости в полной проверке оборудования перед каждой анестезией на протяжении одного и того же дня, добросовестная частичная проверка обязательна перед каждым применением аппаратуры, Случай из практики: обнаружение места утечки в дыхательном контуре Плановая операция у мужчины с массой тела 70 кг. После индукции анестезии и интубации трахеи больного подключили к респиратору с поднимающимися мехами. Параметры ИВЛ: дыхательный объем — 700 мл и частота дыхания — 10/мин. Спустя несколько минут анестезиолог заметил, что во время выдоха мехи в прозрачном колпаке не поднимаются до необходимого уровня. Вскоре сработала тревога разгерметизации.

Почему не поднимались мехи респиратора и сработала тревога?

Поток свежего газа, поступающий в дыхательный контур, был недостаточен для поддержания в контуре объема, необходимого для обеспечения вентиляции с положительным давлением. Если поток свежего газа отсутствует, то объем газа в дыхательном контуре будет медленно снижаться в результате постоянного потребления кислорода больным (метаболические затраты) и поглощения выдыхаемого углекислого газа в адсорбере. Поток свежего газа может отсутствовать вследствие прекращения подачи кислорода по системе стационарного газораспределения (вспомним о механизме обеспечения безопасности при снижении давления кислорода) или в случае, если ручки вентилей подачи газов забыли повернуть в положение "открыто".

Показатели кислородного манометра Bourdon и дозиметров позволяют исключить эти причины утечки в контуре. Более правдоподобное объяснение в рассматриваемом случае — это утечка в дыхательном контуре, которая превышает скорость потока свежего газа. Утечки имеют особо важное значение при анестезии по реверсивному (закрытому) контуру (см. "Случай из практики", гл. 7).

ТАБЛИЦА 4-2. Сравнительные характеристики гальванических и полярографических датчиков Параметр Гальванический датчик Полярографический датчик Аноды Свинцовые Серебряные Катоды Серебряные или золотые Платиновые или золотые Электролитный раствор KOH KCI Стоимость Дорогие электроды Высокие первоначальные затраты Время реагирования Длительное Короткое Время разогрева Отсутствует Несколько минут Расходный материал Датчики Электролит и мембраны Источник питания Химическая реакция Батареи

–  –  –

Как оценить размер утечки?

Объем дыхательного контура поддерживается на постоянном уровне, если приток свежего газа равен расходу. Следовательно, размер утечки можно определить, увеличивая скорость потока свежего газа до тех пор, пока во время выдоха мехи не начнут подниматься на необходимую высоту. Если, несмотря на высокую скорость подачи свежего газа, мехи остаются в спавшемся состоянии, то следует думать о полном рассоединении элементов контура. Следует незамедлительно выявить место рассоединения и восстановить герметичность дыхательного контура во избежание гипоксии и гиперкапнии. Если устранение нарушений затягивается, то больного переводят на ИВЛ реанимационным дыхательным мешком.

В каком месте дыхательного контура наиболее высок риск рассоединения и утечки?

Видимые рассоединения чаще всего возникают между прямоугольным коннектором и эндотрахе-альной трубкой, тогда как риск утечки наиболее высок по периметру нижней крышки адсорбера.

Утечки могут происходить в трахее вокруг безманжеточной эндотрахеальной трубки, а также вокруг неполностью заполненной манжетки. Помимо того, в наркозном аппарате и дыхательном контуре еще существует большое количество мест, где возможны рассоединения и утечки. Добавление в дыхательный контур любого дополнительного элемента (например, увлажнителя) увеличивает риск утечки.

Как можно выявить эти утечки?

Условно утечки подразделяют на случающиеся до выходного патрубка подачи свежей дыхательной смеси (т. е. в наркозном аппарате) и после выходного патрубка (т. е. в дыхательном контуре). Большие утечки в наркозном аппарате происходят значительно реже и их можно выявить с помощью простого теста. Пережатие шланга, который обеспечивает подачу свежего газа от наркозного аппарата в дыхательный контур, приведет к обратной передаче давления в наркозный аппарат, препятствующей потоку свежего газа из наркозного аппарата. Этот феномен проявляется снижением уровня поплавков в дозиметрах. После устранения обструкции поплавки быстро и кратковременно "подскакивают", после чего занимают первоначальное положение. Если утечка внутри наркозного аппарата велика, то пережатие шланга подачи свежего газа не приведет к обратной передаче давления и смещению поплавков вниз. Более чувствительный тест для выявления малых утечек в наркозном аппарате заключается в присоединении отсасывающей груши к выходному патрубку (см. табл. 4-3, ступень 5). Устранение утечек внутри респиратора обычно проводит сервисная служба. Утечку внутри дыхательного контура, если он не соединен с больным, легко выявить следующим образом: закрывается предохранительный клапан, перекрывается просвет Y-образного коннектора и в дыхательный контур через клапан экстренной подачи подается кислород, пока давление в контуре не составит 20-30 см вод. ст.

Постепенное снижение давления в контуре означает утечку внутри него (см. табл. 4-3, ступень 11).

Как точно определить место утечки в дыхательном контуре?

Любое соединение в дыхательном контуре — возможное место утечки. Быстрый осмотр дыхательного контура позволяет обнаружить неплотное соединение дыхательных шлангов или повреждение адаптера кислородного анализатора. К менее очевидным причинам утечки относятся отсоединение тревожной сигнализации от манометра в дыхательном контуре, открытый предохранительный клапан или неправильное присоединение системы улавливания и отвода отработанных газов. Утечку можно определить на слух, а также обработав мыльным раствором подозрительные соединения (при утечке раствор пузырится).

Установленная процедура проверки позволяет своевременно выявить утечки в наркозном аппарате и дыхательном контуре. Например, ступени 5 и 11 рекомендаций Управления по контролю за пищевыми продуктами и лекарственными средствами США (см. табл. 4-3) позволяют обнаружить наиболее значительные утечки.

Избранная литература Dorsch J. A., Dorsch S. E. Understanding Anesthesia Equipment, 3rd ed. Williams & Wilkins, 1993. Сведения о наркозных аппаратах можно найти во многих разделах этого классического руководства.

Ehrenwerth J., Eisenkraft J. В. (ed.). Anesthesia Equipment — Principles and Applications. Mosby Year Book, 1993.

Обзор, посвященный современным моделям наркозных аппаратов и мониторов.

Heavner J. E. et al. Technical Manual of Anesthesio-logy: An Introduction. Raven Press, 1989. В гл. 3 представлен обзор устройства наркозных аппаратов.

Parbrook G. D., Davis P. D., Parbrook E. О. Basic Physics and Measurement in Anesthesia, 3rd ed. Appleton & Lange,

1991. Физические принципы работы наркозного аппарата.

Petty C. The Anesthesia Machine. Churchill Living-stone, 1987.

- 52 Глава 5 Обеспечение проходимости дыхательных путей Виртуозное владение всеми навыками, требующимся для обеспечения проходимости дыхательных путей,— это неотъемлемая часть мастерства анестезиолога. В настоящей главе представлена анатомия верхних дыхательных путей, описаны оборудование и методики обеспечения проходимости дыхательных путей, а также обсуждены осложнения ларингоскопии, интубации и экс-тубации. Безопасность больного находится в прямой зависимости от понимания каждого из этих вопросов.

Анатомия Успешное проведение масочной вентиляции, интубации трахеи, коникотомии и регионарной анестезии гортани зависит от детального знания анатомии дыхательных путей. У человека существует два отверстия для входа воздуха: нос, полость которого сообщается с носоглоткой, и рот, переходящий в ротоглотку. В переднем отделе эти полости разделены нбом, но в задних отделах сливаются (рис. 5-1). В основании языка расположен надгортанник, функция которого состоит в отделении гортани от гипофаринкса (гортаноглотки); гортань переходит в трахею, а гипофаринкс — в пищевод. В процессе акта глотания надгортанник, предотвращая аспирацию, прикрывает голосовую щель, которая является входом в гортань. Гортань состоит из комплекса хрящей, которые скрепляются между собой связками и мышцами. В состав гортани входит девять хрящей (рис. 5-2): непарные щитовидный, перстневидный, надгортанный и парные черпаловидные, рожковидные и клиновидные.

Чувствительная иннервация верхних дыхательных путей обеспечивается ветвями черепных нервов (рис. 5-3). Слизистая оболочка носа в передних отделах иннервируется глазным нервом — первая ветвь тройничного нерва (передний решетчатый нерв), а в задних отделах — от верхнечелюстного нерва, вторая ветвь тройничного нерва (крыловиднонбные нервы). Нбные нервы являются чувствительными веточками тройничного и лицевого нервов и иннервируют твердое и мягкое нбо. Язычный нерв, подразделение нижнечелюстного нерва — третьей ветви тройничного, и языког-лоточный нерв (IX черепной нерв) иннервируют волокнами общей чувствительности соответственно передние 2/3 языка и заднюю треть.

Ветви лицевого нерва и языкоглоточный нерв обеспечивают вкусовую чувствительность языка. Языкоглоточный нерв иннервирует также свод глотки, миндалины и нижнюю поверхность мягкого нба.

Рис. 5-1. Анатомия дыхательных путей Блуждающий нерв (X черепной нерв) обеспечивает чувствительную иннервацию дыхательных путей ниже надгортанника. Верхняя гортанная ветвь блуждающего нерва делится на наружный гортанный нерв (двигательный) и внутренний гортанный нерв (чувствительный). Внутренний гортанный нерв обеспечивает чувствительную иннервацию гортани между надгортанником и голосовыми связками. Другая ветвь блуждающего нерва — возвратный гортанный нерв — иннервирует гортань ниже голосовых связок, а также трахею.

–  –  –

- 54 V1 Глазной нерв — первая ветвь тройничного нерва (передний решетчатый нерв) V2 Верхнечелюстной нерв — вторая ветвь тройничного нерва (крыловиднонбные нервы) V3 Нижнечелюстной нерв — третья ветвь тройничного нерва (язычный нерв) VII Лицевой нерв IX Языкоглоточный нерв

X Блуждающий нерв:

ВеГН — Верхний гортанный нерв — Внутренняя ветвь верхнего гортанного нерва BB ВоГН — Возвратный гортанный нерв Рис. 5-3. Чувствительная иннервация дыхательных путей

–  –  –

Двустороннее повреждение блуждающего нерва вызывает дисфункцию как верхней гортанной ветви, так и возвратного гортанного нерва. Таким образом, двусторонняя денервация блуждающего нерва ведет к вялости и срединному положению голосовых связок; напомним, что аналогичная картина наблюдается после введения сукцинилхолина. Хотя возникают тяжелые расстройства фонации, нарушение проходимости дыхательных путей встречается редко.

Оборудование Ротоглоточные и носоглоточные воздуховоды Потеря тонуса мышц верхних дыхательных путей (например, подбородочно-язычной мышцы) во время анестезии приводит к западению языка и надгортанника (они касаются задней стенки глотки; рис. 5-4). Специально сконструированные воздуховоды, вводимые в рот или нос больного, обеспечивают пассаж воздушной смеси между корнем языка и задней стенкой глотки (рис. 5-5). Если рефлексы с трахеи не подавлены — например, больной находится в сознании или под воздействием поверхностной анестезии,— то попытка введения воздуховода может вызвать кашель и даже ларингоспазм. Введение ротоглоточного воздуховода иногда облегчается при смещении языка вниз с помощью шпателя. Расстояние между кончиком носа и мочкой уха примерно соответствует длине необходимого ротоглоточного воздуховода.

Рис. 5-4. Анестезия вызывает утрату тонуса мышц дыхательных путей (диафрагмы нижней челюсти, ротоглотки), что приводит к обструкции дыхательных путей Рис. 5-5. Правильное положение ротоглоточного (А) и носоглоточного (Б) воздуховодов. (Из: Dorsch J. A., Dorsch S. E. Understanding Anesthesia Equipment: Construction, Care, and Complications. Williams & Wilkins, 1991. Воспроизведено с изменениями, с разрешения.)

- 56 Носоглоточный воздуховод приблизительно на 2-4 см длиннее ротоглоточного. Риск носового кровотечения не позволяет использовать носоглоточные воздуховоды при лечении антикоагулянтами и у детей с выраженными аденоидами. Любую трубку, которую вводят через нос (например, носоглоточный воздуховод, назогастральный зонд, назотрахеальная интубационная трубка), следует увлажнить и продвигать под прямым углом к поверхности лица, избегая травматизации носовых раковин или свода носоглотки. В состоянии поверхностной анестезии больные легче переносят носоглоточные воздуховоды, чем ротоглоточные.

Лицевая маска и методика масочной вентиляции Лицевая маска обеспечивает поступление дыхательной смеси из дыхательного контура к больному путем создания герметичного контакта с лицом больного (рис. 5-6). Край маски снабжен мягким ободом и приспосабливается к лицу любой формы. Отверстие маски диаметром 22 мм присоединяется к дыхательному контуру через прямоугольный коннектор. Существует много видов лицевых масок. Прозрачный корпус позволяет следить за выдыхаемой увлажненной смесью и немедленно заметить возникновение рвоты. Маски из черной резины обычно достаточно пластичны, что позволяет хорошо приспосабливать их при атипичных костных структурах лица. С помощью специальных удерживающих крючков вокруг выходного отверстия маску можно достаточно плотно прикреплять к лицу больного головным ремнем, что избавляет анестезиолога от необходимости удерживать ее руками. Некоторые детские лицевые маски специально разработаны для уменьшения аппаратного "мертвого пространства" (рис. 5-7).

Для эффективной масочной вентиляции необходимы как герметичное прилегание маски к лицу. так и проходимые дыхательные пути. Если в течение длительного времени дыхательный мешок пуст при закрытом предохранительном клапане, то это свидетельствует о значительной утечке по контуру маски. Напротив, сохраняющееся высокое давление в дыхательном контуре при незначительных дыхательных движениях грудной клетки пациента и отсутствующих дыхательных шумах является признаком обструкции дыхательных путей. Обе эти проблемы обычно разрешаются правильной методикой масочной вентиляции.

Рис. 5-6. Лицевая маска для взрослых Рис. 5-7. Детская лицевая маска Rendell-Baker-Soucek: уплощенный корпус и незначительное "мертвое пространство" Если маска удерживается левой кистью, правой рукой можно осуществлять вентиляцию, сдавливая дыхательный мешок. Маску прижимают к лицу, надавливая вниз на ее корпус большим и указательным пальцами левой руки (рис. 5-8). Средний и безымянный пальцы охватывают нижнюю челюсть, разгибая голову в атлантозатылочном сочленении. Давление пальцев должно распространяться на кость нижней челюсти, но не на мягкие ткани, лежащие в основании языка,— последнее может вызвать обструкцию дыхательных путей. Мизинец расположен под углом нижней челюсти и выдвигает челюсть вперед.

В трудных ситуациях для обеспечения достаточного выдвижения нижней челюсти и правильного удержания маски используют обе руки. При необходимости дыхание мешком проводит ассистент.

Рис. 5-8. Методика масочной вентиляции проведения одной рукой В этом случае большими пальцами прижимают маску к лицу, а кончиками или суставами остальных пальцев выдвигают челюсть вперед (рис. 5-9). Окклюзию (залипание) шарового клапана на выдохе можно предупредить ослаблением давления на челюсть в эту фазу дыхательного цикла. Трудно обеспечить плотное

- 57 прилегание маски к щекам у больных без зубов. В подобных случаях можно оставить на месте съемные зубные протезы или же тампонировать щечные впадины марлей. Во время вентиляции положительное давление не должно превышать 20 см вод. ст. во избежание раздувания желудка газовой смесью.

В большинстве случаев проходимость дыхательных путей можно поддержать с помощью лицевой маски, рото- или носоглоточного воздуховода и головного ремня для крепления маски. Продолжительная масочная вентиляция может привести к повреждению ветвей тройничного или лицевого нерва от сдавления. При сохраненном самостоятельном дыхании, когда не требуется положительного давления в дыхательных путях на вдохе, необходимо прикладывать лишь минимальное прижимающее усилие на маску для создания адекватного прилегания. Для профилактики ишеми-ческого повреждения положение маски и строп головного ремня следует периодически менять. Необходимо избегать чрезмерного давления на глазные яблоки и повреждения роговицы.

Рис. 5-9. В трудных ситуациях для масочной вентиляции используют обе руки Ларингеапьная маска и методика ее применения Ларингеальная маска марки Intravent состоит из трубки с широким просветом, проксимальный конец которой соединяется с дыхательным контуром с помощью стандартного коннектора диаметром 15 мм;

дистальный конец впаян в манжетку эллиптической формы, которая заполняется через пи-лотную соединительную трубочку. Опустошенная манжетка смазывается, и ларингеальную маску вслепую вводят в гипофаринкс таким образом, что при заполнении и расправлении манжетки она мягко (с незначительным давлением на окружающие ткани) изолирует вход в гортань. Эта манипуляция требует несколько более глубокой анестезии, чем необходимо для введения ротоглоточного воздуховода. Хотя установка маски достаточно проста, для успешного ее использования следует учитывать некоторые нюансы (табл. 5-2). В идеальном случае манжетка маски должна упираться вверху — в корень языка, латерально — в грушевидные синусы и внизу — в верхний пищеводный сфинктер (рис. 5-10). Индивидуальные анатомические особенности больных могут вносить коррективы и препятствовать адекватному функционированию. Если просвет пищевода расположен внутри кольца манжетки, возможно заполнение желудка дыхательной смесью, в таком случае возникает непосредственная угроза регургитации. Большинство неудач связано с пролапсом надгортанника или дистального края манжетки в гортань и своеобразной тампонадой ее; в трудных случаях следует вводить ларингеальную маску с помощью ларингоскопа или фиброоптического бронхоскопа для непосредственного визуального контроля. У некоторых больных можно частично раздуть манжетку еще перед введением маски. Трубку ла-рингеальной маски закрепляют лейкопластырем (тесьмой), так же как и интубационную трубку (см. рис. 5-20). Ларипгеалъная маска обеспечивает лишь частичную защиту гортани от глоточного секрета (но не от регургитации желудочного содержимого) и должна находиться в глотке до восстановления рефлексов с дыхательных путей. О восстановлении рефлексов свидетельствуют кашель и открывание рта по команде. Ларингеальную маску для многократного использования, подвергаемую автоклавированию, изготавливают из силиконовой резины (т. е. она не содержит латекса) и выпускают в нескольких размерах (табл. 5-3). В какой-то степени ларингеальная маска является альтернативой лицевой маске и эндотрахеальной трубке (табл. 5-4). Применение ларингеальной маски противопоказано при патологии глотки (например, глоточный абсцесс), обструкции глотки, полном желудке (например, при беременности, диа-фрагмальной грыже), высоком сопротивлении дыхательных путей (например, при бронхоспазме), низкой растяжимости легких (например, при ожирении), так как в этих случаях пиковое давление вдоха, необходимое для обеспечения вентиляции, превышает 20 см вод. ст. Хотя совершенно ясно, что ларингеальная маска в полной мере не заменяет эн-дотрахеальную трубку, ее применение особенно оправдано как временная мера при трудностях в обеспечении проходимости дыхательных путей (т. е. при невозможности масочной вентиляции и интубации трахеи), потому что ее легко ввести — частота успешной установки составляет 95-99 %. Ларингеальную маску можно использовать как направитель для введения интубационного стилета (бужа из плотной резины), катетера для струйной ВЧ ИВЛ, гибкого фибробронхоскопа или же эндотрахеальной трубки

- 58 малого диаметра (6 мм). Если необходимым условием является сохранение сознания, то ларингеальную маску вводят после анестезии слизистой оболочки орошением и двусторонней блокады верхнего гортанного нерва.

Пищеводно-трахеальная комбинированная трубка и методика ее применения Пищеводно-трахеальная комбинированная трубка состоит из двух трубок, соединенных вместе по длинной оси. На проксимальном конце каждой трубки находится 15-миллиметровый коннектор (рис. 5-11).

Длинная голубая трубка имеет глухой дистальный конец, так что подаваемая дыхательная смесь проходит через ряд боковых отверстий. Короткая прозрачная трубка имеет открытый дистальный конец и лишена боковых отверстий. Трубку вводят через рот и вслепую продвигают вперед до тех пор, пока черные кольца, нанесенные по окружности трубки, не будут находиться между зубами верхней и нижней челюсти. На трубке закреплены две раздувные манжетки: проксимальная емкостью 100 мл и дистальная емкостью 15 мл, которые необходимо заполнить после установки трубки. Дистальный просвет комбинированной трубки обычно попадает в пищевод, так что дыхательная смесь поступает в гортань через боковые отверстия голубой трубки.

Другой просвет можно использовать для декомпрессии желудка. Альтернативный вариант: если трубка попадает в трахею, то вентиляция осуществляется через торцевое отверстие прозрачной трубки и дыхательная смесь попадает непосредственно в трахею. Иногда для надежной герметизации на заполнение прокси-мальной манжетки требуется до 160 мл воздуха.

Рис. 5-10. Рекомендуемая методика введения ларингеальной маски. А. Манжетка спущена, на ее переднем крае отсутствуют складки. Б. Больного укладывают в "принюхивающееся положение" (разгибают голову в атлантозатылочном сочленении и слегка сгибают шею). Маску продвигают по направлению к твердому нбу. В. Маску продвигают по задней стенке глотки до ощущения сопротивления. Г. Правильное расположение ларингеальной маски. (Из: Brain A. I. J. The Intravent Laryngeal Mask Instruction Manual. Brain Medical Limited, Berkshire, U. K., 1992. Воспроизведено с разрешения.) Комбинированная трубка, по сравнению с ла-рингеальной маской, имеет свои преимущества и недостатки.

Трубка обеспечивает лучшую герметизацию и более надежную защиту от регургита-ции и аспирации желудочного содержимого; вместе с тем, трубка одноразовая, весьма дорогая и производится только одного размера (в расчете

- 59 на больных старше 15 лет и ростом выше 150 см). Боковые отверстия препятствуют использованию голубой трубки в качестве направителя для гибкого фибробронхоскопа или стандартной эндотрахе-альной трубки.

Следует избегать применения пи-щеводно-трахеалъной комбинированной трубки, если не подавлен рвотный рефлекс, имеются заболевания пищевода или в анамнезе были указания на прием внутрь едких или прижигающих веществ (например, уксусной эссенции.— Примеч. пер.).

Эндотрахеальные трубки С помощью эндотрахеальной трубки вдыхаемую смесь можно подавать непосредственно в трахею.

Производство эндотрахеальных трубок в США регулируется требованиями Американских национальных стандартов для анестезиологического оборудования (American National Standard for Anesthetic Equipment;

ANSI Z-79). В качестве сырья для изготовления трубок чаще всего используют поливинилхлорид. Прошедшие биологическое тестирование и нетоксичные трубки маркируются "I.T." или "Z-79". Кривизну и жесткость эндотрахеальной трубки можно изменить введением в ее просвет проводника (стилета). Дистальный конец трубки имеет косой срез для облегчения визуализации голосовых связок и контроля введения.

Эн-дотрахеальная трубка модели Мерфи имеет дополнительное отверстие (глазок Мерфи), что снижает риск полной окклюзии трубки (рис. 5-12).

ТАБЛИЦА 5-2. Правила, соблюдение которых необходимо для успешной установки ларингеальной маски

1. Подбирают маску необходимого размера (см. табл. 5-3) и проверяют ее на предмет утечек

2. Передний край спущенной манжетки не должен иметь складок и морщин. Манжетка должна быть отвернута назад (см. рис. 5 - 10A)

3. Смазывают только нижнюю сторону манжетки

4. Перед введением маски необходимо убедиться в адекватности уровня анестезии (регионарная блокада или общая анестезия). Пропофол в сочетании с опиоидами обеспечивает превосходную анестезию, сравнимую с таковой при введении тиопентала

5. Больного укладывают в "принюхивающееся положение" (разгибают голову в атлантозатылочном сочленении и слегка сгибают шею) (см. рис. 5 - 10Б и 5 - 17)

6. Указательный палец используют в качестве направителя манжетки, скользя по твердому нбу и спускаясь в гипофаринкс до ощущения сопротивления (см. рис. 5 - 10B). Черная продольная линия на маске всегда должна быть ориентирована краниально (т. е. должна располагаться под верхней губой)

7. Раздувать манжетку маски следует расчетным объемом воздуха (см. табл. 5-3)

8. В течение всего периода использования маски необходимо поддерживать адекватный уровень анестезии

9. Обструкция дыхательных путей сразу после введения маски связана с пролапсом надгортанника или преходящим ларингоспазмом

10. До пробуждения не рекомендуется отсасывать отделяемое из глотки, опустошать манжетку или удалять ларингеальную маску (критерий пробуждения — открывание рта по команде) ТАБЛИЦА 5-3. Зависимость размера ларингеальной маски и объема воздуха в манжетке от антропометрических характеристик больного Размер маски Категория больного Масса тела больного Объем манжетки Грудной ребенок 6,5 кг 2-4 мл Ребенок 6,5-20 кг До 10 мл Ребенок 20-30 кг До 15 мл 2,5 Взрослый 30-70 кг До 20 мл Взрослый 70кг До 30 мл Сопротивление воздушному потоку зависит прежде всего от диаметра трубки, а также от ее длины и кривизны. Размер эндотрахеальной трубки обычно соответствует внутреннему диаметру, измеренному в мм, или же — значительно реже — его обозначают согласно Французской шкале (наружный диаметр в мм, умноженный на 3). Выбор размера трубки — это всегда своего рода компромисс между желанием максимально увеличить поток дыхательной смеси, что достигается при большом диаметре трубки, и свести к минимуму риск травмы дыхательных путей, чему способствует малый диаметр (табл. 5-5).

Большинство эндотрахеальных трубок для взрослых снабжены системой раздувной манжетки, состоящей из клапана, контрольного (пилотного) баллона, соединительной трубочки и собственно манжетки (см. рис. 5-12). Клапан препятствует потере объема после раздувания манжетки. Состояние контрольного баллона является важным индикатором состояния манжетки. Соединительная трубочка для раздувания манжетки соединяет клапан с полостью манжетки и частично впаяна в стенку трубки. Манжетка обеспечивает герметичный контакт эндотрахеальной трубки с трахеей, что позволяет проводить принудительную вентиляцию под положительным давлением PI снижает вероятность аспирации желудочного содержимого.

Трубки без манжетки обычно применяются у детей с целью уменьшить риск получения травмы от сдавления и развития постинтубационного крупа (см. гл. 44). Существует два основных типа манжеток: высокого давления (PI малого объема) и низкого давления (высокого объема).

Манжетки высокого давления оказывают значительное ишемическое воздействие на слизистую оболочку трахеи и в меньшей степени подходят для длительной интубации. При использовании трубок с манжетками низкого давления увеличивается риск появления постинтубационных болей в горле (связаны с большей поверхностью контакта манжетки и слизистой оболочки), аспирации, спонтанной экстубации и трудностей при введении трубки в трахею ("висящая" манжетка). Тем не менее, в связи с меньшим повреждающим воздействием на слизистую оболочку, широко рекомендуется использовать именно трубки с манжетками низкого давления.

–  –  –

Давление в манжетке зависит от ряда факторов: от объема, которым она заполняется; от соотношения диаметров манжетки и трахеи; от растяжимости трахеи и манжетки; от внутригрудного давления (давление манжетки возрастает при кашле). Во время общей анестезии закись азота диффундирует из слизистой оболочки трахеи в полость манжетки, поэтому давление в манжетке может увеличиваться.

Эндотрахеальные трубки, в зависимости от назначения, выполняются в различных модификаци-ях. Гибкие, изогнутые, армированные спиралью Эндотрахеальные трубки противостоят перегиба-нию и могут применяться при некоторых операциях на голове и шее или в положении больного на животе. Если же под воздействием экстремального давления армированная трубка все-таки деформировалась (например, проснувшись, больной сдавил ее зубами), то просвет ее окклюзируется и трубку необходимо заменить. Среди других модификаций следует упомянуть микроларингеальные трубки (см. гл. 39), изогнутые под прямым углом эндотра-хеальные трубки (см. рис. 39-1 и 39-3) и двухпро-светные эндотрахеальные трубки (см. рис.

24-8).

- 61 Рис. 5-11. А. Пищеводно-трахеальная комбинированная трубка имеет два просвета и две надувные манжетки. Б.

При попадании дистального конца в пищевод дыхательная смесь через боковые отверстия голубой трубки попадает в гортань, а оттуда — в трахею. В. При попадании дистального конца в трахею дыхательная смесь через торцевое отверстие прозрачной трубки поступает непосредственно в трахею

Рис. 5-12. Эндотрахеальная трубка Мерфи

Ларингоскопы Ларингоскоп — инструмент, применяемый для осмотра и интубации трахеи. Рукоятка одновременно является емкостью для источника питания (батарейки) лампочки, расположенной на клинке (рис. 5-13).

Наиболее широко используются изогнутые клинки Макинтоша и Миллера, разработанные в США. Выбор клинка зависит от личных пристрастий анестезиолога и анатомических особенностей больного. Поскольку идеального клинка для всех клинических ситуаций нет, анестезиолог должен легко и умело пользоваться любым клинком (рис. 5-14).

Гибкий волоконно-оптический бронхоскоп (фибробронхоскоп) У некоторых больных, например при тугопо-движности в височно-нижнечелюстном суставе или при врожденной патологии верхних дыхательных путей, прямая ларингоскопия ригидным ларингоскопом

- 62 нежелательна или даже невозможна. В подобных случаях для непрямой визуализации гортани применяют гибкий волоконно-оптический бронхоскоп (рис. 5-15). Основной узел инструмента представляет собой пучок оптических волокон, передающих свет и изображения путем внутренних отражений; луч света, попав в волокно на одном конце, выходит на противоположном неизмененным. Фибробронхоскоп содержит два оптических пучка, каждый из которых состоит из 10 000-15 000 волокон. Один из них передает свет от источника (световод), в то время как другой передает изображение.

Рис. 5-13. Жесткий ларингоскоп Рис. 5-15. Гибкий волоконно-оптический бронхоскоп (фибробронхоскоп)

- 63 Манипулируя специальным механизмом, можно менять угол кривизны дистального конца бронхоскопа и угол обзора. Аспирационный канал предназначен для отсасывания секрета, инсуффля-ции кислорода или инсталляции местного анестетика. Аспирационный канал трудно чистить, он может являться источником инфицирования; кроме того, при наличии аспирационного канала диаметр бронхоскопа значительно увеличивается.

Методика прямой ларингоскопии и интубации трахеи Показания к интубации Введение интубационной трубки в трахею — обычная для анестезиолога манипуляция. Тем не менее эта процедура не безопасна и не все больные, подвергающиеся общей анестезии, нуждаются в ней. Интубация показана при риске аспирации, при хирургических вмешательствах на органах брюшной и грудной полости, на голове PI шее. Для кратковременных вмешательств (цистоскопия, офтальмологическое исследование под анестезией) вполне приемлема масочная вентиляция.

Подготовка к ларингоскопии Подготовка к интубации включает проверку оборудования и правильную укладку больного. Следует проверить интубационную трубку. Манжетку тестируют, раздувая ее с помощью шприца объемом 10 мл.

Сохранение давления в манжетке после отсоединения шприца свидетельствует о полноценном состоянии манжетки и клапана. Некоторые анестезиологи обрезают эндотрахеальную трубку с проксимального конца до расчетной длины во избежание интубации бронха либо перегиба-ния (см. табл. 5-5). Для предотвращения разгерметизации коннектор следует присоединять к трубке как можно плотнее. При необходимости в эндотрахеальную трубку вводят проводник (стилет) и затем изгибают ее подобно хоккейной клюшке (рис.

5-16). Сгибание трубки показано при переднем расположении гортани. Проверяют контакт клинка с рукояткой ларингоскопа и лампочку. Яркость света должна оставаться постоянной даже при покачивании. Мигание сигнализирует о плохом электрическом контакте, в то время как постепенное затухание свидетельствует об истощении источника питания (батареек). Всегда следует иметь под рукой готовые к работе запасные рукоятку, клинок, эндотрахеальную трубку (на один размер меньше используемой для первой попытки) и проводник. Необходимо обеспечить готовность отсоса на случай внезапного отхождения мокроты, кровотечения или рвоты.

Рис. 5-16. Эндотрахеальная трубка с введенным в просвет клюшкообразно изогнутым проводником Успешная интубация часто зависит от правильного положения больного. Во время ларингоскопии высота операционного стола должна быть отрегулирована таким образом, чтобы голова больного располагалась на уровне мечевидного отростка интуби-рующего — это позволяет избежать чрезмерного напряжения мышц спины анестезиолога. При прямой ларингоскопии происходит смещение мягких тканей глотки, что обеспечивает прямую линию обзора от преддверия рта до входа в гортань. Умеренный подъем головы при одновременном разгибании в ат-лантозатылочном сочленении создает искомое улучшенное ("принюхивающееся") положение (рис. 5-17). Сгибание в нижнешейном отделе достигается при подкладывании под голову небольшой подушки.

Подготовка к индукции и интубации включает также обязательную предварительную оксигена-цию (преоксигенацию). Преоксигенация заключается в нескольких глубоких вдохах 100 % кислорода, что обеспечивает дополнительный уровень безопасности, если после индукции анестезии возникают затруднения при вентиляции. Преоксигенацию не проводят, если больной не переносит наложение маски и масочную вентиляцию — при условии, что у него нет сопутствующих заболеваний легких.

После индукции общей анестезии анестезиолог становится своего рода хранителем больного. Поскольку общая анестезия угнетает защитный корне-альный рефлекс, следует предпринять меры против непреднамеренного повреждения роговицы. Для этого накладывают глазную мазь на вазелиновой основе и закрывают глаза защитными салфетками.

Оротрахеальная интубация Ларингоскопию обычно выполняют недоминирующей рукой (для большинства людей это левая рука).

Рот больного широко открывают, клинок вводят по правой стороне ротоглотки, избегая повреждения зубов.

Язык смещают влево и поднимают клинком вверх, к своду глотки. Кончик изогнутого клинка вводят в валлекулу (ямку, располагающуюся на передней поверхности надгортанника), тогда как кончиком прямого следует приподнимать непосредственно надгортанник.

- 64 Рис. 5-17. Улучшенное ("принюхивающееся") положение больного при интубации клинком Макинтоша. (Из:

Dorsch J. A., Dorsch S. E. Understanding Anesthesia Equipment: Construction, Care, and Complications. Williams & Wilkins,

1991. Воспроизведено с изменениями, с разрешения.) Рукоятку ларингоскопа продвигают вверх и вперед перпендикулярно к нижней челюсти, пока в поле зрения не появятся голосовые связки (рис. 5-18). Следует избегать опоры на зубы. Эндотрахеальную трубку берут в правую руку и проводят через раскрытую голосовую щель. Манжетка должна располагаться в верхних отделах трахеи, но ниже гортани. Ларингоскоп выводят изо рта, вновь избегая повреждения зубов. Чтобы уменьшить повреждение слизистой оболочки трахеи, манжетка заполняется минимальным объемом, обеспечивающим герметичность при ИВЛ. Ощущения от сдавливания "пилотного" баллона пальцами не являются достоверным признаком полноценного заполнения манжетки.

Сразу же после интубации необходимо провести аускультацию над легкими и в эпигастрии, а также оценить капнографическую кривую на мониторе, чтобы подтвердить положение трубки в трахее (рис. 5-19 и 6-29). При малейших сомнениях относительно положения трубки благоразумнее удалить трубку и вентилировать больного через лицевую маску. Если же трубка находится в трахее, ее закрепляют в нужном положении тесемками или лейкопластырем (рис. 5-20). Хотя непрерывная капногра-фическая кривая правильной формы — наиболее достоверный признак пребывания трубки в дыхательных путях, она не позволяет исключить интубацию бронха. Ранним признаком попадания трубки в бронх является увеличение пикового давления вдоха. Несложный прием позволяет подтвердить правильное положение трубки: при кратковременном сжимании контрольного баллона перераздутая манжетка пальпируется другой рукой в яремной вырезке.

Манжетка не должна определяться выше уровня перстневидного хряща, так как ее длительное пребывание в гортани может привести к охриплости голоса в послеоперационном периоде. Положение трубки можно подтвердить при рентгенографии грудной клетки, но обычно в этом не возникает необходимости.

Представленная выше методика относится к больным, находящимся без сознания. Больные в сознании тяжело переносят оротрахеальную интубацию. Внутривенная седация, орошение ротоглотки аэрозолем местного анестетика, регионарная блокада и постоянное общение с больным во время процедуры — все это значительно облегчает интубацию при сохраненном сознании.

При неудавшейся интубации повторные попытки при тех же условиях обычно приводят к отрицательным результатам. Для снижения риска повторной неудачи следует изменить условия интубации: поменять положение больного, взять трубку меньшего размера, использовать проводник, поменять клинок, попытаться интубировать через нос или даже попросить помощи у другого анестезиолога. Если же возникают проблемы с вентиляцией через лицевую маску, необходимо немедленно обеспечить проходимость дыхательных путей любым альтернативным способом: использовать ларингеальную маску, пищеводно-трахеальную комбинированную трубку, коникотомию в сочетании с высокочастотной струйной вентиляцией или даже трахеостомию. При трудной интубации следует руководствоваться алгоритмом действий, разработанным Американским обществом анестезиологов (рис. 5-21).

- 65 Рис. 5-18. Типичный вид голосовой щели при использовании ларингоскопа с изогнутым клинком. (Из: Clinical Anesthesia, 2nd ed. Lippincott, 1992. Воспроизведено с изменениями, с разрешения.) Назотрахеальная интубация Назотрахеальная интубация аналогична оро-трахеальной, за исключением того, что перед ларингоскопией эндотрахеальную трубку вводят через нос в ротоглотку. Для интубации используется более проходимый носовой ход (через которую лучше поступает воздух). В него закапывают раствор фенилэфрина (0,25-0,5 %), что вызывает ва-зоконстрикцию и анемизирует слизистую оболочку. Интубацию при сохраненном сознании можно проводить, орошая слизистую оболочку раствором местного анестетика или с помощью регионарной блокады (см. "Случай из практики" в этой главе). Эндотрахеальную трубку увлажняют гидрофильным гелем и вводят параллельно дну полости носа, в нижний носовой ход, перпендикулярно плоскости лица. Скос трубки должен быть направлен латерально, в противоположную сторону от нижней носовой раковины. Чтобы облегчить правильную ориентацию эндотрахеальной трубки параллельно дну полости носа, ее слегка подтягивают в краниальном направлении (рис. 5-22). Затем трубку осторожно продвигают, пока ее конец не окажется в поле зрения в ротоглотке. Под контролем ларингоскопа трубка проводится через открытую голосовую щель. Иногда для проведения трубки через голосовые связки требуется манипулировать щипцами Мэйджилла, стараясь при этом не повредить манжетку. Назотрахеальная интубация, введение носоглоточных воздуховодов и назогастральных зондов являются опасными мероприятиями при тяжелой лицевой травме, так как при этом высок риск попадания трубки в полость черепа.

Назотрахеальная интубация через фибробронхоскоп Предварительно в обе ноздри закапывают капли сосудосуживающих препаратов. Определяют ноздрю, через которую легче дышать. Инсуффляция кислорода через аспирационный канал позволяет улучшить оксигенацию и удалить секрет с линзы объектива. Альтернативный вариант — введение носоглоточного воздуховода большого размера (например, 36F) в противоположную ноздрю, после чего через коннектор его подсоединяют к дыхательному контуру и во время ларингоскопии подают 100 % кислород. В отсутствие сознания и самостоятельного дыхания полость рта тампонируют и проводят принудительную вентиляцию через носоглоточный воздуховод. При использовании этой методики адекватность вентиляции и оксигенации контролируется с помощью капнографа и пульсоксиметра.

Эндотрахеальную трубку смазывают и вводят в другую ноздрю на глубину носоглоточного воздуховода. Тубус бронхоскопа увлажняют и вводят в просвет эндотрахеальной трубки. При интубации с помощью фибробронхоскопа необходимо соблюдать единственное главное правило: бронхоскоп вводят в просвет эндотрахеальной трубки и ни в коем случае не продвигают, если визуализируется только стенка эндотрахеальной трубки или только слизистая оболочка трахеи. Как только бронхоскоп проходит через дистальный конец трубки, визуально должны определяться надгортанник или голосовая щель. Манипулируя углом кривизны, дистальный конец бронхоскопа заводят в открытую голосовую щель.

- 66 Рис. 5-19. Точки аускультации для проверки положения эндотрахеальной трубки: над верхними отделами легких и эпигастрием Спешить нет необходимости, потому что проводится адекватный мониторинг вентиляции и оксигенации. Если возникают дыхательные расстройства, то бронхоскоп извлекают и больного вентилируют через лицевую маску. В трудных случаях следует попросить ассистента вывести нижнюю челюсть вперед или нажать на перстневидный хрящ для того, чтобы увидеть вход в гортань. Если сохранено самостоятельное дыхание, для облегчения интубации язык можно вывести вперед с помощью языкодержателя.

Рис. 5-20. Метод фиксации эндотрахеальной трубки липким водоустойчивым пластырем

- 67 Рис. 5-21. Алгоритм действий при трудной интубации, разработанный Американским обществом анестезиологов (American Society of Anesthesiologists, ASA). (Из: Practice Guidelines for Management of the Difficult Airway: A report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology, 1993. 78: 597. Воспроизведено с изменениями, с разрешения.) Рис. 5-22. Тракция эндотрахеальной трубки в краниальном направлении облегчает ее правильную ориентацию — параллельно дну полости носа

- 68 После попадания в трахею бронхоскоп проводят до киля. Визуализация колец и киля трахеи — достоверный признак правильного положения бронхоскопа. Эндотрахеальная трубка по бронхо-скопу спускается в трахею. Острый угол между черпаловидными хрящами и надгортанником может затруднять проведение трубки. При использовании армированных трубок это затруднение легко преодолеть благодаря боковой подвижности трубки и менее заостренному концу. Правильное положение трубки подтверждается визуально перед выведением бронхоскопа (дистальный конец трубки определяется над килем).

Методика экстубации Принятие решения об удалении эндотрахеальной трубки — своего рода искусство, во многом зависящее от опыта анестезиолога. Экстубацию лучше выполнять, если больной либо находится в состоянии глубокой анестезии, либо уже проснулся. Но в обоих случаях до экстубации должно быть достигнуто адекватное восстановление нервно-мышечной проводимости. Следует избегать экстубации в условиях поверхностной анестезии (т. е. состояния, промежуточного между глубокой анестезией и бодрствованием), так как это связано с повышенным риском ларингоспазма. Санация глотки позволяет легко отличить глубокую анестезию от поверхностной: любая реакция на отсасывание (например, задержка дыхания, кашель) является признаком поверхностной анестезии, в то время как отсутствие реакции — характеристика глубокой анестезии. Соответственно, открывание глаз или целенаправленные движения свидетельствуют о пробуждении.

Экстубация у пробудившегося больного обычно сопровождается кашлем (или двигательной реакцией). Экстубация вызывает также учащение сердечного ритма, повышение ЦВД, артериального давления, внутричерепного и внутриглазного давления. Возможно некоторое расхождение краев операционной раны и кровотечение из нее. У проснувшегося больного с сопутствующей бронхиальной астмой нахождение трубки в трахее может спровоцировать бронхоспазм. В то время как введение лидокаина в дозе 1,5 мг/кг в/в за 1-2 мин до отсасывания и экстубации позволяет снизить риск развития этих осложнений, экстубация на фоне глубокой анестезии показана тем больным, которые особенно плохо переносят вышеперечисленные реакции. Однако экстубация на фоне глубокой анестезии противопоказана при риске аспирации, а также в случаях, если предполагается, что обеспечение проходимости дыхательных путей после удаления эндотрахеальной трубки будет затруднено.

Вне зависимости от уровня сознания во время экстубации, во избежание аспирации или ларингоспазма необходимо тщательно санировать глотку. Если нельзя полностью исключить нарушения проходимости дыхательных путей после удаления эндотрахеальной трубки, то перед экстубацией больного следует дополнительно вентилировать 100 % кислородом. Непосредственно перед экстубацией удаляют фиксирующие тесемки, а также опустошают манжетку. Не существенно, когда удалять трубку: в конце выдоха или же в конце вдоха. Трубку удаляют одним плавным движением, после чего накладывают лицевую маску и подают 100 % кислород до стабилизации состояния, когда больного можно будет транспортировать в послеоперационную палату. В некоторых учреждениях принято во всех случаях после операции транспортировать больных на фоне ингаляции кислорода.

Осложнения ларингоскопии и интубации Осложнения ларингоскопии и интубации обычно обусловлены неправильным положением интуба-ционной трубки, травмой дыхательных путей, патофизиологическими реакциями на манипуляции в дыхательных путях, нарушениями функции эндотрахеальной трубки (табл. 5-6).

–  –  –

- 69 Непреднамеренная интубация пищевода может привести к катастрофическим последствиям. Выявить это осложнение можно, наблюдая прохождение кончика эндотрахеалъной трубки в голосовую щель во время интубации, тщательно выслушивая фонендоскопом двусторонние дыхательные шумы и исключая раздувание желудка, оценивая содержание CO2 в выдыхаемой смеси (наиболее достоверный метод), наконец, с помощью фибробронхоскопа или рентгенографии грудной клетки.

Даже если трубка находится в трахее, она может занимать неправильное положение. Чрезмерное проведение трубки вперед приводит к попаданию ее в правый бронх, так как он имеет болеевертикальное направление. Основными признаками интубации бронха являются проведение дыхательных шумов только с одной стороны, неожиданная гипоксия по данным пульсоксиметрии (несмотря на высокую фракционную концентрацию кислорода во вдыхаемой смеси), невозможность пропальпировать манжетку в яремной ямке при сжимании контрольного баллончика, а также слабая растяжимость дыхательного мешка (обусловленная высоким пиковым давлением вдоха).

Напротив, слишком поверхностное расположение трубки, когда манжетка находится в гортани, чревато повреждением гортани. Это осложнение можно выявить, пропальпировав манжетку выше щитовидного хряща или же при рентгенографии шеи.

Поскольку нет универсального приема, позволяющего определить неправильное положение эндотрахеальной трубки во всех случаях, то целесообразно использовать следующий минимум тестов:

аускуль-тация легких, пальпация манжетки, капнография.

Если в процессе операции позу больного меняют, то следует перепроверить положение эндотрахеальной трубки. Разгибание и вращение головы вызывают удаление конца трубки от киля трахеи, в то время как сгибание приводит к смещению трубки по направлению к килю.

Травма дыхательных путей Манипуляции металлическим клинком ларингоскопа и введение жесткой эндотрахеальной трубки часто травмируют ткани дыхательных путей. Хотя в США самой частой причиной исков к анестезиологам является повреждение зубов, помимо этого ларингоскопия и интубация могут стать причиной целого ряда осложнений — от болей в горле до стенозов трахеи. Большинство из них — результат длительного воздействия давления на чувствительные к ишемии структуры дыхательных путей. Если воздействие на ткани превышает капиллярно-артерио-лярное давление (примерно 30 мм рт. ст.), то они подвергаются ишемии с последующим воспалением, изъязвлением, грануляцией и стенозом. Раздувание манжетки эндотрахеальной трубки минимальным объемом, необходимым для обеспечения герметичности при ИВЛ под положительным давлением (обычно не менее 20 мм рт. ст.), снижает кровоток в слизистой оболочке трахеи (в области контакта с манжеткой) на 75 %. Дальнейшее раздувание манжетки или управляемая артериальная гипотония могут вызвать полное прекращение крово-тока в слизистой оболочке.

Постинтубационный круп является результатом отека голосовой щели, гортани или трахеи и особенно опасен у детей. Эффективность кортикостероидов (например, дексаметазона в дозе 0,2 мг/кг, максимальная доза 12 мг) для профилактики постинтубационного отека дыхательных путей остается недоказанной. Паралич голосовых связок вследствие сдавления манжеткой, а также какая-либо иная травма возвратного гортанного нерва вызывают охриплость, а также значительно увеличивают риск аспирации. Трубки, изготовленные по форме дыхательных путей (например, анатомическая эндотрахеальная трубка Lindholm), позволяют снизить частоту развития некоторых из указанных осложнений. Факторы риска возникновения послеоперационной охриплости включают ожирение, трудную интубацию, длительную анестезию. Предварительное смазывание конца трубки или манжетки гидрофильной мазью либо гелем, содержащим местный анестетик, не снижает вероятность развития постинтубационных болей в горле и охриплости. Использование трубок малого размера (6,5 — у женщин и 7,0 — у мужчин) снижает вероятность появления послеоперационных болей в горле. Повторные попытки ларингоскопии при трудной интубации могут вызвать отек голосовых связок, что приводит к невозможности ма-сочной вентиляции: типичный пример того, как плохую ситуацию превращают в опасную для жизни (алгоритм действий, см. рис. 5-21).

Патофизиологические реакции на манипуляции в дыхательных путях Ларингоскопия и интубация трахеи — мощный, грубый стимул для защитных рефлексов дыхательных путей, что предсказуемо влечет за собой гипертонию и тахикардию. Эти гемодинамические сдвиги можно предупредить в/в инъекцией лидокаина (1,5 мг/кг за 1-2 мин до ларингоскопии), алфента-нила (10-20 мкг/кг за 2-3 мин до ларингоскопии) или фентанила (3-8 мкг/кг за 4-5 мин до ларингоскопии). Гипотензивные средства, включая натрия нитропруссид, нитроглицерин, гидралазин и про-пранолол, также могут эффективно предупреждать преходящую прессорную реакцию. Аритмии — особенно желудочковая бигеминия — достаточно распространенное явление при интубации; обычно это признак поверхностной анестезии.

Ларингоспазм является выраженным непроизвольным сокращением мышц гортани, вызванным сенсорной стимуляцией верхнего гортанного нерва. Пусковой момент ларингоспазма — это скопление отделяемого в глотке или проведение эндотрахе-альной трубки через гортань при экстубации. Хотя развитие ларингоспазма возможно и у бодрствующего больного, тем не менее экстубацию лучше выполнять, если больной либо находится в состоянии глубокой анестезии, либо уже проснулся. Лечение ларингоспазма предусматривает щадящую вентиляцию 100 % кислородом под положительным давлением или введение лидокаина в/в в дозе 1-1,5 мг/кг. При стойком ларингоспазме, вызывающем гипоксию, вводят сукцинилхолин (0,25-1 мг/кг), чтобы обеспечить медикаментозный парез мышц гортани и создать возможность для принудительной ИВЛ. Значительное отрицательное внутригрудное давление, возникающее в результате попыток вдоха при ларингоспазме, может послужить причиной отека легких даже у здоровых молодых людей.

- 70 В то время как ларингоспазм представляет собой патологически гипертрофированный защитный рефлекс, аспирация, наоборот, обусловлена угнетением гортанных рефлексов вследствие длительной интубации и анестезии.

Бронхоспазм также является рефлекторной реакцией на интубацию, чаще он возникает при сопутствующей бронхиальной астме. Иногда причиной бронхоспазма является эндо-бронхиальная интубация. К другим патофизиологическим реакциям относится повышение внутричерепного и внутриглазного давления.

Нарушение функции эндотрахеальной трубки Эндотрахеальные трубки не всегда функционируют так, как предполагается. О риске возможного воспламенения эндотрахеальных трубок в закисно-кислородной среде сказано в гл. 2. Повреждение клапана или манжетки — явление не редкое, поэтому их обязательно проверяют перед использованием эндотрахеальной трубки.

Возможна обструкция трубки в результате ее перегибания, аспирации инородного тела или попадания вязкого бронхиального секрета.

Случай из практики: трудности при обеспечении проходимости дыхательных путей Девушке 17 лет показано экстренное дренирование поднижнечелюстного абсцесса.

Что является наиболее важным для анестезиолога при предоперационном обследовании больного с патологией дыхательных путей?

В некоторых ситуациях (табл. 5-7) выполнение прямой ларингоскопии и интубации после индукции анестезии может быть опасно или даже невозможно. Выбирая оптимальную методику интубации, анестезиолог должен собрать анамнез, тщательно осмотреть голову и шею больного. Если больному уже проводили анестезию раньше, то следует изучить наркозные карты на предмет осложнений со стороны дыхательных путей.

Если существуют выраженные деформации лица, препятствующие хорошему прилеганию маски, то вентиляция под положительным давлением невозможна. Кроме того, при патологии гортано-глотки проходимость дыхательных путей в большой степени зависит от мышечного тонуса, который адекватно поддерживается только в состоянии бодрствования. У больных этих двух групп до надежного обеспечения проходимости дыхательных путей не следует применять препараты, которые угнетают самостоятельное дыхание, т. е. анестетики, седативные средства и миорелаксанты.

ТАБЛИЦА 5-7. Состояния, осложняющие интубацию трахеи Опухоли Травма Кистозная гигрома (серозная киста) Перелом гортани Гемангиома Перелом верхней и нижней челюсти Гематома Ожог дыхательных путей Инфекции Повреждение шейного отдела позвоночника Поднижнечелюстной абсцесс Ожирение Перитонзиллярный абсцесс Неадекватное разгибание шеи Эпиглоттит Ревматоидный артрит Врожденные аномалии Анкилозирующий спондилит Синдром Пьера-Робина Скелетное вытяжение за теменные бугры Синдром Тренера-Коллинза Анатомические особенности Атрезия гортани Микрогнатия Синдром Голденхара Прогнатизм Краниофасциальный дизостоз Большой язык Инородные тела Аркообразное нбо Короткая шея Выступающие верхние резцы При существенном ограничении подвижности в височно-нижнечелюстном суставе миорелаксанты не способствуют более широкому открыванию рта, поэтому следует предпочесть назотрахеальную интубацию.

Инфекционный процесс на дне полости рта обычно не препятствует назотрахеальной интубации. Тем не менее, если в процесс вовлечена гортаноглотка на уровне подъязычной кости, то любой чрезгортанный доступ к трахее может быть затруднен.

Различают следующие прогностические признаки трудной интубации:

ограниченное разгибание шеи ( 35°), расстояние между подбородком и подъязычной костью менее 7 см, расстояние между подбородком и грудиной менее 12,5 см при полном разгибании головы и сомкнутых губах, а также плохая визуализация нбного язычка при волевом выведении языка (рис. 5-23). Необходимо подчеркнуть, что простой методики обследования дыхательных путей не существует, прогностические признаки трудной интубации могут быть выражены слабо, поэтому анестезиолог всегда должен быть готов к неожиданным осложнениям.

Анестезиологу обязательно следует исключить обструкцию дыхательных путей (симптомы включают втяжение податливых участков грудной клетки, стридор) и гипоксию (симптомы включают возбуждение, беспокойство, тревожность, сонливость). Риск развития аспирационной пневмонии особенно велик, если больной недавно принимал пищу или абсцесс самостоятельно дренировался в полость рта. В любом случае надо избегать методики, при которой угнетаются ларинге-альные рефлексы (например, анестезия слизистой оболочки орошением).

В представленном для обсуждения случае фи-зикальное обследование выявляет выраженный отек лица, ограничивающий движения нижней челюсти. Тем не менее прилегание маски скорее всего не будет нарушено. На боковых рентгенограммах головы и шеи обнаружено распространение процесса выше гортани.

- 71 В полости рта виден гной.

Какую методику интубации следует предпочесть?

Стандартные методики оро- и назотрахеальной интубации для больных в состоянии общей анестезии описаны в соответствующем разделе. Эти методики выполнимы и при сохраненном сознании. Независимо от того, выключено или же сохранено сознание у больного, осуществляется интубация через рот или полость носа, она может быть выполнена с помощью ларингоскопа, фибробронхоскопа или же вслепую. Таким образом, существует по крайней мере 12 видов чрезгортанной интубации трахеи (например, больной в сознании, назотрахеальная интубация с помощью фибробронхоскопа). К альтернативным методам относятся использование ларингеальной маски, пищеводно-трахеальной комбинированной трубки, а также трахеотомия или коникотомия в опасных для жизни ситуациях.

У нашей больной интубация может оказаться трудной: гной дренируется в полость рта, и вентиляция под положительным давлением в подобной ситуации невозможна. Поэтому нельзя проводить индукцию анестезии, пока не будет надежно обеспечена проходимость дыхательных путей. Локализация абсцесса под нижней челюстью — четкий аргумент за интубацию через нос и, вероятно, без использования ларингоскопа.

Таким образом, остается два альтернативных варианта: назотрахеальная интубация при сохраненном сознании с применением фибробронхоскопа или же назотрахеальная интубация вслепую при сохраненном сознании.

Окончательное решение зависит от наличия фибробронхоскопа и персонала, владеющего методикой бронхоскопии.

Вне зависимости от избранного варианта, следует подготовиться к трахеотомии. Состояние готовности означает, что в операционной должна присутствовать бригада опытных хирургов; следует принести (но не распаковывать) необходимый для трахеотомии инструментарий. Шею больной обрабатывают антисептическими растворами и обкладывают стерильным бельем.

Какую премедикацию следует назначить больной?

Утрата сознания или угнетение рефлексов дыхательных путей может вызвать обструкцию дыхательных путей либо аспирацию. В премедикацию рекомендуется включить гликопирролат, так как он является мощным ингибитором секреции слизистой оболочки верхних дыхательных путей и не проникает через гематоэнцефалический барьер (см. гл. 11). Парентеральные седативные препараты следует строго титровать либо вообще от них отказаться. Психологическая подготовка больной включает поэтапное объяснение сущности манипуляций, что в дальнейшем может значительно облегчить сотрудничество с ней. Ведение больных с риском аспирации подробно рассматривается в "Случае из практики" в гл. 15.

Рис. 5-23. Можно ожидать трудную оротрахеальную интубацию (III или IV степень), если перед операцией в процессе осмотра полости рта больного в положении сидя нельзя увидеть некоторые структуры глотки (III или IV класс).

(Из: Mallampati S. R. Clinical sings to predict difficult tracheal intubation (hypothesis). Can. Anaesth. Soc. J., 1983. 30:316.

Воспроизведено с изменениями, с разрешения.) Опишите методику назотрахеапьной интубации вслепую Эндотрахеальную трубку необходимо обработать гелем с лидокаином и на несколько минут для усиления кривизны согнуть так, как показано на рис. 5-24. Больного укладывают в "принюхивающееся" положение.

Конец трубки осторожно проводят в носовой ход перпендикулярно поверхности лица. Пассаж воздуха через трубку следует постоянно контролировать тактильно, на слух или капногра-фией. Трубку продвигают вперед постепенно, на вдохе. Если спонтанные дыхательные движения сохраняются, но пассажа воздуха через трубку

- 72 нет, то это указывает на интубацию пищевода. В этом случае трубку немного подтягивают и затем вновь продвигают вперед. Задержки дыхания и кашель означают, что конец трубки находится в непосредственной близости от гортани и поэтому трубку следует продолжать продвигать при каждом вдохе. Если трубка не попадает в трахею, то существует несколько приемов, исправляющих ситуацию. После того как трубка будет подведена ко входу в гортань, в ее просвет можно ввести клюшкооб-разно изогнутый проводник, после чего кончик трубки отклонится вперед. Разгибание головы также способствует смещению конца трубки кпереди, тогда как повороты головы из стороны в сторону вызывают боковые девиации трубки. Давление на гортань или перстневидный хрящ улучшают взаимное расположение между концом трубки и голосовой щелью.

Раздувание манжетки трубки, которая находится в гипофаринксе, также может способствовать смещению ее конца в переднем направлении.

Рис. 5-24. Эндотрахеальная трубка, свернутая в кольцо; чем круче изогнута трубка, тем легче она проходит в гортань при назотрахеальной интубации вслепую Если трубка упорно соскальзывает в пищевод, можно попросить больного высунуть язык, что угнетает акт глотания и также способствует смещению трубки кпереди.

После того как интубация трахеи завершена, можно приступать к индукции анестезии. По завершении дренирования экстубация возможна только после того, как полностью восстановятся сознание и рефлексы с дыхательных путей. Необходимое оборудование и персонал должны быть готовы для непредвиденной реинтубации.

Какая регионарная анестезия показана для обеспечения интубации при сохраненном сознании?

Язычные и некоторые глоточные ветви языко-глоточного нерва, обеспечивающие чувствительность задней трети языка и ротоглотки, легко блокируются инъекцией 2 мл местного анестетика в основание каждой нбно-язычной дужки (также известной как передняя миндаликовая дужка) иглой для спинномозговой пункции № 25 (рис. 5-25). Двусторонняя блокада верхнего гортанного нерва и транстрахеальная блокада вызывают анестезию дыхательных путей ниже голосовой щели (рис. 5-26). Пальпируют подъязычную кость и вводят по 3 мл 2 % раствора лидокаина на 1 см ниже каждого большого рожка, где внутренняя ветвь верхнего гортанного нерва проходит через щито-подъязычную мембрану.

Рис. 5-25. Нервная блокада. Язык смещают вбок шпателем. При инфильтрации основания нбно-язычной дужки раствором местного анестетика блокируется язычная и глоточная ветви языкоглоточного нерва. Следует отметить, что язычная ветвь языкоглоточного нерва — это не язычный нерв, который, в свою очередь, является ветвью тройничного нерва Транстрахеальная блокада выполняется следующим образом: шею разгибают (подложив валик), после чего идентифицируют перстнещитовидную мембрану, которую затем перфорируют иглой. Нахождение иглы в просвете

- 73 трахеи подтверждается аспирацией воздуха; затем в конце выдоха в трахею вводят 4 мл 4 % раствора лидокаина.

Глубокий вдох и кашель непосредственно после введения анестетика способствуют его распространению в трахее.

Хотя все эти блокады обеспечивают комфорт больного во время интубации при сохраненном сознании, вместе с тем они также притупляют защитный кашлевой рефлекс и угнетают глотательный рефлекс, что может привести к аспирации. Анестезия глотки орошением может вызвать преходящую обструкцию дыхательных путей, так как она угнетает рефлекторную регуляцию просвета дыхательных путей на уровне голосовой щели.

Так как у нашей больной существует высокий риск аспирации, то целесообразно ограничиться местной анестезией полости носа. Применение 4 % раствора кокаина не имеет существенных преимуществ по сравнению с применением смеси 4 % раствора лидокаина и 0,25 % раствора фенилэфрина и может быть причиной побочных эффектов со стороны сердечно-сосудистой системы. Следует рассчитать максимальную безопасную дозу местных анестетиков и не превышать ее (см. гл. 14). Анестетик наносится на слизистую оболочку носа с помощью марлевого аппликатора, после чего введение смазанного лидокаиновым гелем носоглоточного воздуховода не доставит неприятных ощущений больной.

Чем обусловлена необходимость держать набор для экстренной трахеотомии наготове?

Ларингоспазм — вполне вероятное осложнение интубации в отсутствие миорелаксации, даже если сознание сохранено. При ларингоспазме высок риск несостоятельности масочной вентиляции. Если для устранения ларингоспазма вводят сукцинилхолин, то в результате расслабления мышц глотки может возникнуть обструкция верхних дыхательных путей, что дополнительно усугубит расстройства дыхания. В подобной ситуации экстренная трахеотомия может спасти жизнь.

Какие альтернативные методики интубации могут быть использованы в этом случае?

Существует методика ретроградной интубации. Длинный проволочный проводник или эпидуральный катетер ретроградно проводят через перстнещитовидную мембрану в трахею. Проводник (или катетер) продвигают краниально, он попадает в глотку и выходит через нос или рот. Эндотрахе-альную трубку проводят по катетеру как по напра-вителю. После того как трубка проходит в гортань, катетер удаляют. Вариантом этой методики является ретроградное проведение проволочного проводника через аспирационный канал фибро-бронхоскопа или реинтубационного стилета, которые служат направителями для предварительно надетой на них трубки.

Направители большого диаметра облегчают проведение трубки в трахею.

Рис. 5-26. Блокада верхнего гортанного нерва и транстрахеальная блокада ТАБЛИЦА 5-8. Портативный набор оборудования на случай трудной интубации

• Клинки к ларингоскопу, форма и размер которых отличаются от постоянно используемых

• Набор эндотрахеальных трубок различного диаметра

• Проводники для эндотрахеальных трубок. Возможные варианты включают (но не ограничены перечисленным): полужесткие стилеты (монолитные и с полостью для струйной ВЧ ИВЛ), светящийся проводник, щипцы для манипулирования дистальным концом эндотрахеальной трубки

• Фибробронхоскоп

• Оборудование для ретроградной интубации

• По крайней мере один комплект оборудования для экстренного "нехирургического" обеспечения вентиляции.

Возможные варианты включают (но не ограничены перечисленным): респиратор для транстрахеальной струйной ВЧ ИВЛ, полый стилет для струйной ВЧ ИВЛ, ларингеальную маску, пи-щеводно-трахеальную комбинированную интубационную трубку

• Набор для экстренного хирургического обеспечения проходимости дыхательных путей (например, для коникотомии)

• Капнометр Примечание. Предлагаемый перечень набора оборудования носит рекомендательный характер. Он может быть изменен в зависимости от потребностей медицинского учреждения, предпочтений и навыков врача. Набор соответствует приведенному выше алгоритму действий при трудной интубации. (Из: Practice guidelines for management of the difficult airway:

A report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology, 1993. 78:

597. Воспроизведено с изменениями с разрешения Американского общества анестезиологов.) Существует немалое количество специализированного оборудования и инструментов для обеспечения

- 74 проходимости дыхательных путей. Оно должно быть легко доступно в экстренных ситуациях (табл. 5-8).

Другой возможностью является кони-котомия, которая описана в гл. 48. В рассмотренной клинической ситуации при использовании любой из этих методик могут возникнуть трудности, поскольку подчелюстной абсцесс сопровождается отеком и анатомической деформацией шеи.

Избранная литература Benumof J. L. Management of difficult adult airway with special emphasis on awake traheal intubation.

Anesthesiology, 1991. 75: 1087. Прекрасный обзор, посвященный прогностическим признакам трудной интубации, ретроградной интубации, транстрахеальной струйной ВЧ ИВЛ, применению пищеводно-трахеальной комбинированной трубки.

Berry F. A. Anesthetic Management of Difficult and Routine Pediatric Patients, 2nd ed. Churchill Li-vingstone, 1990.

Crosby E. T., Lui A. L. The adult cervical spine: Implications for airway management. Can. J. Anesth., 1990. 37: 77.

Обзор посвящен предоперационному обследованию при патологии дыхательных путей, особое внимание уделено интубации больных с нестабильностью шейного отдела позвоночника.

Dorsch J. A., Dorsch S. E. Understanding Anesthesia Equipment, 3rd ed. Williams & Wilkins, 1991. Представлены характеристики эндотрахеальных трубок, ларингоскопов, лицевых масок и воздуховодов.

Ellis H., Feldman S. Anatomy for Anaesthetists, 6th ed. Blackwell, 1993. Содержит главу, посвященную анатомии дыхательных путей.

Gorback M. S. (ed.). Emergency Airway Management. Mosby Year Book, 1991.

Latto I. P., Rosen M. Difficulties in Tracheal Intubation. Bailliere Tindall, 1985.

McIntyre J. W. R. Laryngoscope design and the difficult adult tracheal intubation. Can. J. Anaesth., 1989. 36; 94.

Освещены вопросы выбора ларингоскопа в зависимости от анатомических особенностей (например, каким клинком следует воспользоваться в конкретной ситуации — Миллера или Макинтоша).

Miller K. A., Harkin C. P., Bailey P. L. Postoperative tracheal extubation. Anesth. Analg., 1995 80: 149.

Nishino T. Swallowing as a protective reflex for the upper respiratory tract. Anesthesiology 1993. 79: 588. Интересное и клинически важное обсуждение глотательного рефлекса и влияния нарушений глотания на общую анестезию.

Ovassapian A. Fiberoptic Airway Endoscopy in Anesthesia and Critical Care. Raven Press, 1990. Издание очень хорошо иллюстрировано.

Pennant J. H., White P. F. The laryngeal mask airway: Its uses in anesthesiology. Anesthesiology, 1993. 79:144.

Хороший обзор, посвященный показаниям и противопоказаниям к применению ла-рингеальной маски.

Roberts J. T. (ed.). Fiberoptics in Anesthesia. Saunders, 1991.

Roberts J. T. (ed.). Clinical Management of the Airway. Saunders, 1994.

- 75 Глава 6 Интраоперационный мониторинг Обеспечение безопасности больного, находящегося в состоянии анестезии, является одной из основных обязанностей анестезиолога. "Бдительность" — девиз Американского общества анестезиологов (the American Society of Anesthesiologists). Для эффективного обеспечения безопасности необходима система адекватного наблюдения за больным во время операции, поэтому Американское общество анестезиологов приняло стандарты интраоперационного мониторинга (минимальные стандарты приведены в рамке в конце главы). Анестезиолог должен разбираться в особенностях использования сложного мониторного оборудования, включая экономические аспекты (принцип "затраты/эффективность"). В настоящей главе рассматриваются показания, противопоказания, методика, осложнения и клинические особенности применения наиболее важных и распространенных в анестезиологии мониторов.

Мониторинг кровообращения Артериальное давление Ритмичные сокращения левого желудочка вызывают колебания артериального давления. Пик артериального давления, генерируемый во время систолического сокращения, называется систолическим артериальным давлением (АДсист.); желобообраз-ное снижение артериального давления в период ди-астолического расслабления — это диастолическое артериальное давление (АДдиаст.). Пульсовое давление представляет собой разницу между систолическим и диастолическим артериальным давлением. Средневзвешенное во времени значение артериального давления на протяжении сердечного цикла называют средним артериальным давлением (АДср.).

Среднее артериальное давление можно рассчитать по следующей формуле:

АДср. = (АДсист. + 2АДдиаст.)/3.

Место измерения оказывает выраженное влияние на значение артериального давления. Когда пульсовая волна распространяется от сердца к периферии, то вследствие феномена отражения ее конфигурация искажается, приводя к увеличению АДсист. и пульсового давления (рис. 6-1). Например, АДсист. в лучевой артерии обычно выше, чем в аорте, потому что лучевая артерия расположена дистальнее. В отличие от вышесказанного после гипотермического искусственного кровообращения АДсист. в лучевой артерии ниже, чем в аорте, вследствие снижения сосудистого сопротивления верхней конечности (рис. 6-2). При использовании вазодилататоров (например, изофлюрана, нитроглицерина) эта разница возрастает. На значения артериального давления также влияет место его измерения относительно уровня сердца, что обусловлено действием силы тяжести (рис. 6-3). При тяжелых заболеваниях периферических артерий могут наблюдаться существенные различия при измерении артериального давления на правой и левой руке: в этом случае следует принимать во внимание большее значение. Поскольку неинвазив-ные (пальпация, допплерография, аускультация, осциллометрия, плетизмография, тонометрия) и инвазивные (катетеризация артерии) методы измерения артериального давления существенно различаются, они будут рассмотрены отдельно.

1. НЕИНВАЗИВНЫЙ МОНИТОРИНГ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ

Показания Общая и регионарная анестезия — это абсолютные показания для мониторинга артериального давления. Методика и частота измерения артериального давления зависят от состояния больного и вида хирургического вмешательства. В подавляющем большинстве случаев аускультативное измерение артериального давления каждые 3-5 мин представляет собой вполне адекватный подход. Если аускульта-тивно измерить артериальное давление невозможно (например, при выраженном ожирении), то используют допплерографию или осциллометрию.

Рис. 6-1. Изменение конфигурации пульсовой волны по мере уменьшения калибра артерий. (Из: Blitt C. D.

Monitoring in Anesthesia and Critical Care Medicine, 2nd ed. Churchill Livingstone, 1990. Воспроизведено с разрешения.)

- 76 Противопоказания Не следует накладывать манжетку для измерения артериального давления на конечность с аномалиями сосудов (например, артериовенозная фистула для гемодиализа) или установленным катетером для в/в инфузий.

Методика и осложнения А. Пальпация. Измеряют АДсист. следующим образом: 1) определяют пульс на периферической артерии; 2) проксимальнее места пульсации накладывают манжетку прибора для измерения артериального давления и нагнетают в нее воздух до тех пор, пока пульс не перестанет определяться;

3) из манжетки медленно выпускают воздух — скорость снижения давления должна составлять приблизительно 2-3 мм рт. ст. на каждый удар сердца;

4) фиксируют давление в манжетке, при котором вновь начинает определяться пульс. Эта методика дает заниженные значения АДсист. вследствие недостаточной тактильной чувствительности пальцев, а также из-за задержки по времени между прохождением потока крови под манжеткой и дистальной пульсацией. С помощью пальпации невозможно определить диастолическое и среднее артериальное давление. Оборудование для измерения артериального давления методом пальпации является простым и недорогим (рис. 6-4).

Б. Допплерография. Если заменить палец анестезиолога допплеровским датчиком, то измерение артериального давления становится возможным при ожирении, при шоке и у детей (рис. 6-5). Эффект Допплера состоит в том, что частота звука, издаваемого движущимся объектом, изменяется при восприятии этого звука неподвижным наблюдателем. Это изменение частоты звука получило название "сдвиг частоты звуковых волн".

Рис. 6-2. Через 15, 60 и 120 мин после прекращения искусственного кровообращения систолическое артериальное давление в лучевой артерии ниже, чем в бедренной. Эта разница возрастает при использовании нитратов и антагонистов кальция. В то же время среднее артериальное давление в лучевой и бедренной артерии остается одинаковым.

(Из:

Maruyama K. et al. Effect of combined infusion of nitroglycerin and nicardine on femoral-to-radial arterial pressure gradient after cardiopulmonary bypass. Anesth. Analg., 1990. 70:428. Воспроизведено с разрешения.) Рис. 6-3. Различие в результатах измерения артериального давления (в мм рт. ст.) при размещении манжетки на различной высоте равно величине водного столба между точками измерения (в см вод. ст.), умноженной на поправочный коэффициент (1 см вод. ст. = 0,74 мм рт. ст.) Например, громкость свистка поезда нарастает по мере его приближения и снижается при его удалении. При отражении звуковых волн от движущегося объекта также происходит сдвиг частоты

- 77 Рис. 6-4. Оборудование, необходимое для измерения артериального давления методом пальпации Рис. 6-5. Допплеровский датчик, закрепленный над лучевой артерией, будет воспринимать перемещения эритроцитов до тех пор, пока давление в манжетке не превысит систолического артериального давления. (С разрешения Parks Medical Electronics.) звуковых волн. Допплеровский датчик посылает ультразвуковой сигнал, который отражается от тканей. Так как эритроциты продвигаются по артерии, то допплеровский датчик будет регистрировать сдвиг частоты ультразвуковых волн. Разница между излучаемой и воспринимаемой частотой вызывает свистящий звук, появление которого свидетельствует о возобновлении кровотока в сосуде. Так как воздух является проводником ультразвуковых волн, то на кожу следует нанести контактный гель (ни в коем случае не электродный — он вызывает коррозию датчика). Необходимо расположить датчик непосредственно над артерией, чтобы пучок ультразвуковых лучей прошел через стенку сосуда. Досадными помехами являются интерференция от перемещения датчика или работы электрокаутера. Следует заметить, что допплеровская методика позволяет достоверно измерить только АД сист.

Вариантом допплеровской методики является применение пьезоэлектрических кристаллов, которые регистрируют боковые смещения артериальной стенки при перемежающемся изменении просвета сосуда в систолу и диастолу. Использование пьезоэлектрических кристаллов позволяет измерить не только систолическое, но и диастоличес-кое артериальное давление.

В. Аускультация. Раздувание манжетки давлением, промежуточным между систолическим и ди-астолическим, приводит к частичному перекрытию просвета подлежащей артерии, что вызывает турбулентный поток в сосуде и проявляется характерными звуками Короткова. Эти звуки можно прослушать через стетоскоп, расположенный под дистальной третью раздутой манжетки или сразу дистальнее ее края.

Diasyst — резиновый стетоскоп особой конструкции, который закрепляется под манжетку (с внутренней ее стороны) застежками Велкро (рис. 6-6). Систолическое артериальное давление соответствует первым ударам звуков Короткова. Относительно диастолического артериального давления существует два мнения: согласно одному, это давление соответствует началу затухания звука, согласно второму — полному исчезновению.

Иногда в части диапазона от АДсист. до АДдиаст. невозможно услышать звуки Короткова. Этот аускультативный провал чаще всего наблюдается при артериальной гипертонии и может привести к ошибке — полученные значения артериального давления окажутся заниженными. Звуки Короткова трудно выслушать при гипотонии и при выраженной периферической вазоконстрик-ции. В подобных ситуациях с помощью микрофона выявляют волны субзвуковой частоты (ассоциированные со звуковыми), после чего усиливают их и измеряют систолическое и диастолическое артериальное давление; двигательные артефакты и интерференция от электрокаутера ограничивают применение этой методики.

Г. Осциллометрия. Пульсация артерии вызывает колебания (осцилляции) давления в манжетке. Эти осцилляции малы, если давление в манжетке больше, чем АДсист. Когда давление в манжетке снижается до уровня АДсист., то пульсация передается на манжетку и осцилляции заметно возрастают. Амплитуда осцилляции максимальна, когда давление в манжетке соответствует АДср., при дальнейшем снижении давления амплитуда уменьшается. Поскольку некоторые осцилляции давления в манжетке не вызваны изменением артериального давления (например, некоторые осцилляции присутствуют при давлении выше систолического или ниже диастолического), то ртутный и анероидный манометры дают довольно грубые и неточные результаты. Автоматические электронные мониторы измеряют давление, которое соответствует изменению амплитуды осцилляции (рис. 6-7). Микропроцессор в соответствии с алгоритмом рассчитывает АДсист., АДдиаст. и АДср. Для адекватной работы осциллометрических мониторов необходима последовательность одинаковых пульсовых волн, поэтому они могут давать неправильные результаты при аритмиях (например, мерцательная аритмия). Осциллометрические мониторы не следует применять при использовании аппарата искусственного кровообращения. Тем не

–  –  –

Рис. 6-7. Осциллометрическое определение артериального давления менее благодаря быстроте получения результатов, точности и возможности применения в различных клинических ситуациях наибольшее распространение в США получил именно осциллометричес-кий метод неинвазивного мониторинга артериального давления.

Д. Плетизмография. Пульсация артерий вызывает преходящее увеличение кровенаполнения конечностей. Пальцевой фотоплетизмограф, состоящий из светодиода и фотоэлемента, измеряет изменения объема пальца. Если давление в про-ксимально расположенной манжетке превышает АД сист., то пульсации и изменения в объеме прекращаются. Плетизмограф Finapres (finger arterial pressure — артериальное давление в пальце) непрерывно измеряет минимальное давление в пальцевой манжетке, необходимое для того, чтобы объем пальца все время оставался одинаковым. Воздушный насос, управляемый соленоидом, быстро модулирует давление в манжетке, что отражается на дисплее в виде непрерывной кривой колебаний артериального давления. Данные плетизмографичес-кого мониторинга обычно соответствуют данным, полученным с помощью внутриартериального катетера. Однако плетизмография дает недостоверные результаты при нарушенной периферической перфузии (например, при заболевании перифери-ческих артерий или гипотермии).

E. Артериальная тонометрия. Артериальная то-нометрия позволяет неинвазивно и непрерывно определять артериальное давление путем измерения давления, необходимого для частичного прижатия поверхностной артерии (например, лучевая артерия) к подлежащим костным структурам. Тонометр состоит из нескольких независимых датчиков давления и накладывается на кожу в проекции артерии (рис. 6-8). Датчик через кожу воспринимает напряжение стенки артерии PI, прижимая ее, отражает давление внутри просвета.

Непрерывная регистрация артериального давления дает кривую, форма которой очень похожа на конфигурацию волны при инвазивном измерении артериального давления. Тонометрия чувствительна к смещениям (движе-ние руки приводит к артефактам), поэтому при данном методе необходима частая калибровка прибора.

Клинические особенности Во время анестезии необходимо поддерживать адекватную доставку кислорода к жизненно важным органам. К сожалению, аппаратура для мониторинга перфузии и оксигенации отдельных органов сложна и

- 79 дорогостояща, поэтому об органном кровотоке судят по системному артериальному давлению. Следует заметить, что кровоток определяется не только градиентом (разницей) давления, но и сосудистым сопротивлением:

Градиент давления Поток = ————————————————— Сосудистое сопротивление Таким образом, артериальное давление следует рассматривать только как индикатор перфузии органов, но отнюдь не как ее точный показатель.

Точность тех методов измерения артериального давления, при которых используют манжетку, зависит от ее размеров (рис. 6-9). По длине резиновая Рис. 6-8. Тонометрия — метод непрерывного (от удара к удару) измерения артериального давления. Датчик должен быть установлен непосредственно над артерией манжетка должна по крайней мере 1,5 раза оборачиваться вокруг конечности, а ширина ее должна на 20-50 % превышать диаметр конечности (рис. 6-10). В анестезиологии часто используются автоматические мониторы артериального давления, в работе которых применяется одна из вышеперечисленных методик или их сочетание. Автоматический насос нагнетает воздух в манжетку через установленные интервалы времени. Если воздух нагнетается в манжетку слишком часто и на протяжении длительного времени, то могут возникнуть отек конечности (вследствие интенсивного поступления введенных инфузионных растворов из сосудистого русла во внеклеточную жидкость) и парезы нервов. На случай неисправности всегда должен быть готов к работе запасной комплект оборудования для измерения артериального давления.

Рис. 6-9. На результаты измерения артериального давления влияет ширина манжетки. Представлены три манжетки, давление внутри них одинаковое. Для того чтобы перекрыть просвет плечевой артерии и таким образом измерить АДсист., в самой узкой манжетке (А) требуется создать наибольшее давление, а в самой широкой (В) — наименьшее. Использование слишком узкой манжетки может привести к значительному превышению АДсист., тогда как излишне широкая манжетка дает заниженные значения АДсист. Если манжетка на 20 % шире должной, то ошибка измерения менее существенна, чем если она на 20 % уже должной. (Из: Gravenstein J. S., Paulus D. A. Monitoring Practice in Clinical Anesthesia. Lippincott, 1982. Воспроизведено с разрешения.)

- 80 Рис. 6-10. Ширина манжетки для измерения артериального давления должна на 20-50 % превышать диаметр конечности больного

2. ИНВАЗИВНЫЙ МОНИТОРИНГ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ

Показания Показания к инвазивному мониторингу артериального давления путем катетеризации: управляемая гипотония; высокий риск значительных сдвигов артериального давления во время операции; заболевания, требующие точной и непрерывной информации об артериальном давлении для эффективного управления гемодинамикой; необходимость частого исследования газов артериальной крови.

Противопоказания Следует по возможности воздерживаться от катетеризации, если отсутствует документальное подтверждение сохранности коллатерального крово-тока, а также при подозрении на сосудистую недостаточность (например, синдром Рейно).

Методика и осложнения А. Выбор артерии для катетеризации. Для чрес-кожной катетеризации доступен ряд артерий.

1. Лучевую артерию катетеризируют чаще всего, так как она располагается поверхностно и имеет коллатерали. Тем не менее у 5 % людей артериальные ладонные дуги оказываются незамкнутыми, что делает коллатеральный кровоток неадекватным. Проба Аллена — простой, хотя и не вполне достоверный способ определения адекватности коллатерального кровообращения по локтевой артерии при тромбозах лучевой артерии. Вначале больной несколько раз энергично сжимает и разжимает кулак, пока кисть не побледнеет;

кулак остается сжатым. Анестезиолог пережимает лучевую и локтевую артерии, после чего больной разжимает кулак. Коллатеральный кровоток через артериальные ладонные дуги считается полноценным, если большой палец кисти приобретает первоначальную окраску не позже чем через 5 с после прекращения давления на локтевую артерию. Если восстановление первоначального цвета занимает 5-10 с, то результаты теста нельзя трактовать однозначно (иначе говоря, коллатеральный кровоток "сомнителен"), если больше 10 с — то существует недостаточность коллатерального кровотока. Альтернативными методами определения артериального кровотока дистальнее места окклюзии лучевой артерии могут быть пальпация, допплеровское исследование, плетизмография или пульсоксимет-рия. В отличие от пробы Аллена, для этих способов оценки коллатерального кровотока не требуется содействие самого больного.

2. Катетеризацию локтевой артерии технически сложнее проводить, так как она залегает глубже и более извита, чем лучевая. Из-за риска нарушения кровотока в кисти не следует катетеризировать локтевую артерию, если ипсилатеральная лучевая артерия была пунктирована, но катетеризация не состоялась.

3. Плечевая артерия крупная и достаточно легко идентифицируется в локтевой ямке. Так как по ходу артериального дерева она расположена недалеко от аорты, то конфигурация волны искажается лишь незначительно (по сравнению с формой пульсовой волны в аорте). Близость локтевого сгиба способствует перегибанию катетера.

4. При катетеризации бедренной артерии высок риск формирования псевдоаневризм и атером, но часто только эта артерия остается доступной при обширных ожогах и тяжелой травме. Асептический некроз головки бедренной кости — редкое, но трагическое осложнение при катетеризации бедренной артерии у детей.

5. Тыльная артерия стопы и задняя больше-берцовая артерия находятся на значительном удалении от аорты по ходу артериального дерева, поэтому форма пульсовой волны существенно искажается.

Модифицированная проба Аллена позволяет оценить адекватность коллатерального кровотока перед катетеризацией этих артерий.

6. Подмышечная артерия окружена подмышечным сплетением, поэтому существует риск повреждения нервов иглой или в результате сдавле-ния гематомой. При промывании катетера, установленного в левой подмышечной артерии, воздух и тромбы будут быстро попадать в сосуды головного мозга.

Б. Методика катетеризации лучевой артерии.

Одна из методик катетеризации лучевой артерии приведена на рис. 6-11. Супинация и разгибание кисти обеспечивают оптимальный доступ к лучевой артерии. Предварительно следует собрать систему

- 81 катетер-магистраль-преобразователь и заполнить ее гепаринизированным раствором (примерно 0,5-1 ЕД гепарина на каждый мл раствора), т. е. подготовить систему для быстрого подключения после катетеризации артерии.

Рис. 6-11. Катетеризация лучевой артерии. А. Решающим моментом является правильная укладка конечности и пальпация артерии. Кожу обрабатывают антисептиком и через иглу 25-го размера инфильтрируют местным анестетиком в проекции артерии, Б. Катетером на игле 20-22-го размера прокалывают кожу под углом 45°. В. Появление крови в павильоне свидетельствует о попадании в артерию. Угол вкола уменьшают до 30°, и катетер на игле продвигают еще на 2 мм в глубь артерии. Г. Катетер вводят в артерию по игле, которую затем удаляют. Д. Пережимая артерию средним и безымянным пальцами проксимальнее катетера, предотвращают выброс крови во время подсоединения магистрали через коннектор типа Люера Путем поверхностной пальпации кончиками указательного и среднего пальцев недоминантной руки анестезиолог определяет пульс на лучевой артерии и ее расположение, ориентируясь на ощущение максимальной пульсации. Кожу обрабатывают йодоформом и раствором спирта и через иглу 25-27-го размера инфильтрируют 0,5 мл лидокаина в проекции артерии. Тефлоновым катетером на игле 20-22-го размера прокалывают кожу под углом 45°, после чего продвигают его по направлению к точке пульсации. При появлении крови в павильоне угол вко-ла иглы уменьшают до 30° и для надежности продвигают вперед еще на 2 мм в просвет артерии. Катетер вводят в артерию по игле, которую затем удаляют. Во время подсоединения магистрали артерию пережимают средним и безымянным пальцами проксимальнее катетера, чтобы предотвратить выброс крови. Катетер фиксируют к коже водоустойчивым лейкопластырем или швами.

В. Осложнения. К осложнениям интраартери-ального мониторинга относятся гематома, спазм артерии, тромбоз артерии, воздушная эмболия и тромбоэмболия, некроз кожи над катетером, повреждение нервов, инфекция, потеря пальцев (вследствие ишемического некроза), непреднамеренное внутриартериальное введение препаратов. Факторами риска являются длительная катетеризация, гиперлипидемия, многократные попытки катетеризации, принадлежность к женскому полу, применение экстракорпорального кровообращения, использование вазопрессоров. Риск развития осложнений снижают такие меры, как уменьшение диаметра катетера по отношению к просвету артерии, постоянная поддерживающая инфузия раствора гепарина со скоростью 2-3 мл/ч, уменьшение частоты струйных промываний катетера и тщательная асептика. Адекватность перфузии при катетеризации лучевой артерии можно непрерывно контролировать путем пульсоксиметрии, размещая датчик на указательном пальце

- 82 ипсилатеральной кисти.

Клинические особенности Поскольку внутриартериальная катетеризация обеспечивает длительное и непрерывное измерение давления в просвете артерии, эта методика считается "золотым стандартом" мониторинга артериального давления. Вместе с тем качество преобразования пульсовой волны зависит от динамических характеристик системы катетер-магистраль-преобразователь (рис. 6-12). Ошибка в результатах измерения артериального давления чревата назначением неправильного лечения.

Пульсовая волна в математическом отношении является сложной, ее можно представить как сумму простых синусоидных и косинусоидных волн. Методика преобразования сложной волны в несколько простых называется анализом Фурье. Чтобы результаты преобразования были достоверными, система катетер-магистраль-преобразователь должна адекватно реагировать на самые высокочастотные колебания артериальной пульсовой волны (рис. 6-13). Иными словами, естественная частота колебаний измеряющей системы должна превышать частоту колебаний артериального пульса (приблизительно 16-24 Гц).

Кроме того, система катетер-магистраль-преобразователь должна предотвращать гиперрезонансный эффект, возникающий в результате реверберации волн в просвете трубок системы. Оптимальный демпинговый коэффициент () составляет 0,6-0,7. Демпинговый коэффициент и естественную частоту колебаний системы катетер-магистраль-преобразователь можно рассчитать при анализе кривых осцилляции, полученных при промывании системы под высоким давлением (рис. 6-14).

Рис. 6-12. Система катетер-магистраль-преобразователь



Pages:     | 1 || 3 | 4 |   ...   | 9 |


Похожие работы:

«Разаренова Татьяна Георгиевна УЛЬТРАЗВУКОВАЯ ОЦЕНКА МОТОРНО-ЭВАКУАТОРНОЙ ФУНКЦИИ ЖЕЛЧЕВЫДЕЛИТЕЛЬНОЙ СИСТЕМЫ У ПАЦИЕНТОВ С ЯЗВЕННОЙ БОЛЕЗНЬЮ ДВЕНАДЦАТИПЕРСТНОЙ КИШКИ ДО И ПОСЛЕ ОПЕРАЦИИ 14.00.19 – лучевая д...»

«mini-doctor.com Инструкция Вальсакор Н 80 таблетки, покрытые пленочной оболочкой, 80 мг/12,5 мг №30 (15х2) ВНИМАНИЕ! Вся информация взята из открытых источников и предоставляется исключительно в ознакомительных целях. Вальсакор Н 80 таблетки, покрытые пленочной...»

«Дата актуализации: 14.11.2016 WWW.GARANT.RU Актуальную версию смотрите на сайте Гражданский процессуальный кодекс Российской Федерации по состоянию на 14.11.2016 г. Принят Государственной Думой 23 октября 2002 года Одобрен Советом Федерации 30 октября 2002 года Раздел I. Общие положения Глава 1. Основные положе...»

«№ 4 2013 г. 09.00.00 философские науки УДК 612.821.3+517.982.26 ДЕТЕРМИНИРОВАННЫЕ МАШИНЫ ТЬЮРИНГА И ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И. А. Чистяков ГБОУ ВПО "Новосибирский государственный медицинский университет" Минздрава России (г. Новосибирск) Целью работы является исследование применимости классической машины...»

«„Світ медицини та біології”, номер 2 2009 рік ности. Определено, что при длительной been studied. It has been determined that during физической тренировке в умеренном режиме prolonged physical training in moderate regime the отмечаются признаки гиперплазии эндокриноцитов signs of hyperplasia of endocrinocytes...»

«АКТУАЛЬНЫЕ СТАТЬИ ОСОБЕННОСТИ ЭМОЦИОНАЛЬНОГО ИНТЕЛЛЕКТА, КАЧЕСТВА ЖИЗНИ И СОЦИАЛЬНОГО ФУНКЦИОНИРОВАНИЯ У ПАЦИЕНТОВ С ШИЗОФРЕНИЕЙ В.А. Шемет, В.А. Карпюк Гродненский государственный медицинский университет, Гродно, Беларусь В настоящее время шизофрения – одно из наиболее инвалидизирующих психиче...»

«Давидян Енок Давидович КЛИНИКО-АУДИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ТУБООТОТА ПРИ НАКАЧИВАЮЩЕМ ЭФФЕКТЕ СЛУХОВОЙ ТРУБЫ 14.00.04 Болезни уха, горла и носа АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата ме...»

«Приложение № 3 К СТАНДАРТАМ И ПРАВИЛАМ предпринимательской деятельности членов Саморегулируемой организации Союза организаций, осуществляющих санитарно-противоэпидемические (профилактические) мероприятия "За профилактическую медицину" Стандарт действий медицинской организации по проведению профилактических прививок работник...»

«ПРОГРАММНЫЙ КОМПЛЕКС ПОЛИУС / РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ 1/85 Программный комплекс "ПОЛИУС" Руководство пользователя 1 Общее описание программного комплекса 1.1 Назначение программного комплекса Программный комплекс "ПОЛИУС" (Полис – Услуги – Стати...»

«РОССИЙСКОЕ ОБЩЕСТВО ДЕРМАТОВЕНЕРОЛОГОВ И КОСМЕТОЛОГОВ ФЕДЕРАЛЬНЫЕ КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЕДЕНИЮ БОЛЬНЫХ ВРОЖДЕННЫМ БУЛЛЕЗНЫМ ЭПИДЕРМОЛИЗОМ Москва 2015 Персональный состав рабочей группы по подготовке федеральных клинических рекомендаций по профилю Дерматовенерология, раздел "В...»

«2012 "Сестринский процесс при рахите, гипервитаминозе Д", спазмофилии" Пособие для самоподготовки Дисциплина "Сестринское дело в педиатрии" Специальность 060501 Утверждено на заседании ЦМК "Сестринское де...»

«Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования Федеральное государственное бюджетное образовательное учреждение высшего профессиональн...»

«(19) (11) (13) РОССИЙСКАЯ ФЕДЕРАЦИЯ RU 2 478 290 C2 (51) МПК A01N 63/02 (2006.01) A01C 1/06 (2006.01) C12N 1/20 (2006.01) C12R 1/07 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2011145665/10, 11.11.2011 (72) Автор(ы): Сираева Зульфира Юнысовна (RU), (24) Дата...»

«Содержание Мукофальк® – уникальный источник пищевых волокон 1. 2 2. Холестерин: плохой или хороший? 5 3. Что мы знаем о холестерине 6 4. Обмен холестерина 7 5. Гиперхолестеринемия и риск атеросклероза 11 6. Лечение 14 6.1. Дие...»

«МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования "Гродненский государственный медицинский университет" МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ХИРУРГИИ для сту...»

«Государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный медицинский университет" Министерства здравоохранения Российской Федерации "Утверждаю" Проректор Алтайского государственного медицинского университета, профессор Ю.Ф. Лобанов Исследование...»

«УДК 616.8-009.11-031-085.851.8:615.477 КЛИНИЧЕСКИЙ СЛУЧАЙ РЕАБИЛИТАЦИИ ДВИГАТЕЛЬНЫХ НАРУШЕНИЙ ПРИ СИНДРОМЕ ЦЕНТРАЛЬНОГО ГЕМИПАРЕЗА С ИСПОЛЬЗОВАНИЕМ CIMT И ПОЗНО-ТОНИЧЕСКИХ РЕФЛЕКСОВ. Прокопенко С.В.1, Можейко Е.Ю.1, Рыбалко Н.А.1, Таровская А.М.1, Алексеевич Г.В.1 ГБОУ ВПО "Красноярский государственный...»

«Конкордия Антарова Две жизни Том 2 Содержание: Бегство капитана Т. и Наль из К. в Лондон. Свадьба О чём молился пастор. О чём думала Дженни. C чем боролась леди Катарина Письма Дженни, её разочарование и борьба Важное событие в семье графа Т. На балконе у Наль. Завещание пастора Скачки Болезнь и...»

«Влияние электролитного баланса на коров Крюков В.С., профессор. ГК АгроБалт трейд, Санкт-Петербург Иногда в крови отелившихся коров происходит резкое снижение кальция даже при достаточном содержании элемента в корме, что приводит к гибели животных. Заболевание представляет постоянную проблему для высокопродуктивных стад. При падении...»

«АССОЦИАЦИЯ СЕРДЕЧНО-СОСУДИСТЫХ ХИРУРГОВ РОССИИ ВСЕРОССИЙСКОЕ НАУЧНОЕ ОБЩЕСТВО КАРДИОЛОГОВ КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЕДЕНИЮ ВЗРОСЛЫХ ПАЦИЕНТОВ С ВРОЖДЕННЫМИ ПОРОКАМИ СЕРДЦА Москва, 2010 г. УДК 616.12-007-053.1(035) Клинические рекомендации по ведению взрослых пациентов с врожденными пороками сердца. – М.: НЦССХ им. А....»

«НЕДЗВЕЦКИЙ Сергей Валентинович ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ ПРОВОДНИКОВОЙ АНЕСТЕЗИИ В ХИРУРГИИ НИЖНИХ КОНЕЧНОСТЕЙ 14.00.37 – Анестезиология и реаниматология Автореферат диссертации на соискание ученой степени кандидата медицинс...»

«ПОЛИТИКА ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ ГБУЗ Республиканская клиническая больница им. Г.Г. Куватова Общие положения Политика информационной безопасности ГБУЗ РКБ им. Г.Г. Куватова предполагает создание совокупности взаимоувязанных нормативных...»

«МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Корни, корневища, луковицы, ОФС.1.5.1.0006.15 клубни, клубнелуковицы Radices, rhizomata, bulbi, tubera, Взамен ст. ГФ ХI bulbotubera В фармацевтической практике используют высушенные, реже свежие подземные органы...»

«Республика Калмыкия Приказ от 23 июля 2012 года № 1001ПР/111­П/133­ПР О мерах по предупреждению профессионального заражения медицинских работников вирусами иммунодефицита человека (ВИЧ), гепатитов B и С Принят Министерст...»

«Всероссийский центр экстренной и радиационной медицины им. А.М. Никифорова МЧС России С.С. Алексанин, В.И. Евдокимов, В.Ю. Рыбников АНАЛИЗ ДИССЕРТАЦИОННЫХ РАБОТ, ЗАЩИЩЕННЫХ В ДИССЕРТАЦИОННЫХ СОВЕТАХ ПРИ ВСЕРОССИЙСКОМ ЦЕНТРЕ ЭКСТРЕННОЙ И РАДИАЦИОННОЙ МЕДИЦИНЫ ИМ. А.М. НИКИФОРОВА МЧС РОССИИ (1998–2013 гг.) Санк...»

«296 УДК 538.975; 539.217 Электрофизические и сорбционные характеристики гетероструктуры прополис/кремний Тутов Е.А., Тутов А.Е. ГОУ ВПО "Воронежский государственный университет", Воронеж Бутусов И.Ю. Воронежская го...»

«Алгоритмы диагностики и лечения злокачественных новообразований ГЛАВА 13 ГЕПАТОЦЕЛЛЮЛЯРНЫЙ РАК (С22.0) В течение последних десяти лет в Республике Беларусь число ежегодно регистрируемых случаев заболевания гепатоцеллюлярным раком увеличилось в 2,7 раза: с 63 в 2001 г. до 173 в 2010 г. В 2010 г. з...»

«ш Коломяги Динамо 25 июня 2015 года. Первенство Санкт­Петербурга. 12­й тур Футбольный клуб "Коломяги". Официальная программа №6 (51) "Динамо" в движении Из­за многочисленных переносов элитой. В первом круге им удалось участникам первенства Санкт­Петербурга общими усилиями отобрать у "Коломяг" приходится играть в сложном р...»








 
2017 www.doc.knigi-x.ru - «Бесплатная электронная библиотека - различные документы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.