WWW.DOC.KNIGI-X.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Различные документы
 

Pages:   || 2 | 3 | 4 |

«К. Я. К О Н Д Р А Т Ь Е В О. А. А В А С Т Е М. П. ФЕДОРОВА К. Е. Я К У Ш Е В С К А Я П О Л Е ИЗЛУЧЕНИЯ ЗЕМЛИ КАК ПЛАНЕТЫ БИБЛИОТЕКА / ! ни г а ...»

-- [ Страница 3 ] --

Обработав данные «Тайроса-Ш», Р. Векслер [1.51] получил величины альбедо от 4—10% (при безоблачном небе) до примерно 30% при наличии сплошной облачности (следует, однако, отметить, что в районе Сахары альбедо в ясную погоду достигает 20%). Лишь для первых пяти витков получились величины альбедо, составляющие 54% для канала 5 и 47% для канала 3. Среднее значение альбедо по всем данным для первых пяти витков равно 20%. Если учесть, что, по данным самолетных измерений, среднее альбедо облаков составляет 50%, а единичные значения достигают 80%, то ясно, что результаты спутниковых измерений следует считать заниженными.

Д. Т. Коновер [100] разработал методику определения альбедо системы земная поверхность — атмосфера на основе использования телевизионной информации (фотографий облачного покрова и земной поверхности), полученной при помощи метеорологических спутников. Эта методика была применена для обработки как спутниковых фотографий, так и одновременных фотографий с борта самолета «У-2, летевшего на высоте 20 км.

Спектральные чувствительности спутниковой телекамеры и аэросъемочного аппарата примерно одинаковы. Градуировка системы телекамеры (включая видеомагнитофон) осуществлена,231 путем последовательного облучения экрана телекамеры радиацией от. трех вольфрамовых ламп накаливания (использование нескольких источников' обусловлено необходимостью моделировать широкий диапазон яркостей). Определение абсолютных величин яркости облаков (выраженных в энергетических единицах) по значениям сигнала, зафиксированного на видеомагнитофон^ наземной приемной станции, осуществлено-, путем сравнения с амплитудой сигналов, зарегистрированной при облучении телекамеры в процессе предполетной градуировки.



Как показано в [100], при фотометрической обработке пленки необходимо учитывать влияние следующих факторов: 1) изменения экспозиции от кадра к кадру; 2) влияния изменений температуры на работу телевизионной системы; 3) неоднородности распределения плотности почернения даже при использовании однородной засветки; 4) неоднородности пленки.

При вычислении альбедо по величинам яркости облаков предполагается, что облака отражают радиацию изотропно, а влияние расположенного выше облаков слоя атмосферы учтено лишь посредством расчета вклада релеевского рассеяния для надирного угла, равного 22° (угловая зависимость многократно рассеянного света не принимается во внимание), и поглощения озоном, общее содержание которого составляет 0,28 «см». Величины яркости облаков и земной поверхности по данным спутниковых и самолетных измерений согласуются удовлетворительно.

Измеренные со спутника осредненные значения альбедо колеблются от 7% (Тихий океан, безоблачно) до 92% (протяженные и плотные кучево-дождевые облака). Обнаружено уменьшение альбедо снежного покрова с 70 до 51% по прошествии четырех суток. Для района пустыни Уайт Сэндс (Нью-Мексико, США) зарегистрировано альбедо, равное 68% при высоте Солнца 78° и надирных углах от 17 до 28°. Сравнение с данными по альбедо, известными из литературы, показывает, что как спутниковые, так и самолетные измерения описанного, типа приводят к

- завышенным величинам.

В. Нордберг, В. Р. Бандин, В. Д. Конрат, В. К у н д е и П. Персано [2.98] проанализировали результаты определения эффективной температуры и альбедо по данным измерений уходящей радиации на спутнике «Тайрос-III», используя полученные одновременно широкоугольные фотографии распределения облачности.

Рассмотренные в работе [2.98] три типичных случая относятся к Атлантическому океану и Северной Африке (два примера для условий безоблачной атмосферы), а также к восточной части США (облачное небо). Все данные получены для о колол олуденного местного времени. Существенно.при этом, что во всех трех упомянутых случаях телевизионные камеры и широкоугольный радиометру-были направлены почти точно в надир.





,232 Надирный угол визирования для пятиканального радиометра изменялся от 0 до 45°. Полученные авторами [2.98] результаты обсуждены в монографиях [84, 85].

С. Расул и К. Прабхакара [94] впервые осуществили климатологическую обработку данных спутников «Тайрос» за 1962— 1963 гг. с целью получить сведения об осредненном планетарном распределении составляющих радиационного баланса системы земная поверхность — атмосфера полосе широт в 60° ю. ш. — 60° с. ш. Для повышения точности результатов обработки данных измерений при помощи пятиканального радиометра были использованы лишь показания прибора, относящиеся к зенитным углам Солнца менее 60° и надирным углам визирования менее 45°.

По данным «Тайроса-IV» с февраля по июнь 1962 г., осредненным для квадратов размером 5° широты на 5° долготы, авторы [94] построили карту планетарного альбедо. При построении этой карты приняты во внимание лишь такие точки, которым соответствовало не менее 100 единичных значений альбедо (чаще всего это число составляло около 500). Вычисления альбедо сделаны по показаниям пятиканального радиометра для канала 3 (область спектра 0,2—5 мк) в предположении изотропности отражения солнечной радиации Землей. При обработке результатов измерений учтено изменение чувствительности радиометра со временем.

Наиболее характерные черты географического распределения альбедо могут быть охарактеризованы следующим образом.

Альбедо океанов, особенно в субтропиках, составляет около 20%.

Альбедо континентов изменяется в пределах от 30 до 40%.

В среднем альбедо океанов равно 26%, а континентов — 34%.

Среднее альбедо системы земная поверхность — атмосфера в исследованной полосе широт равно 31%. Изолинии альбедо повторяют очертания океанов, а вблизи береговой черты наблюдаются большие градиенты альбедо. Для южного полушария характерна слабая долготная изменчивость альбедо, за исключением субтропической зоны, где имеют место три области минимума альбедо над океанами.

В течение всего периода измерений альбедо Сахары и Аравийской пустыни составляет около 45% и сравнимо с альбедо районов Центральной Африки и Южной Америки, где наблюдается интенсивная облачность (эти данные подтверждаются и результатами измерений на «Тайросе-Ш» и «Тайросе-VII»).

Столь высокое значение альбедо свидетельствует о том, что выполненные ранее оценки поглощенной солнечной радиации для районов пустынь являются, по-видимому, завышенными. Поскольку уходящее длинноволновое излучение в данном случае весьма велико, оказывается, что в условиях Сахары радиационный баланс системы земная поверхность — атмосфера близок,233 к нулю, что противоречит известным результатам расчетов, дающих положительный баланс.

На рис. 90 приведены изоплеты поглощенной радиации q', построенные С. Расулом и К. Прабхакара [94] по данным «Тайроса-IV» и «Тайроса-VII» и рассматриваемые как средние за год. Как видно из этого рисунка, необычно высокие значения q' имеют место в средних и субтропических широтах северного поРис. 90. Изоплеты суточных сумм поглощенной солнечной радиации (кал/см 2 сутки).

лушария в июне и июле. Обращает на себя внимание зона максимума поглощенной радиации, наблюдаемая в субтропических широтах южного полушария летом. Обе отмеченные особенности изменчивости поглощенной радиации обусловлены главным образом влиянием низкого альбедо океанов.

Рисунок 91 характеризует широтный и годовой ход уходящего длинноволнового излучения. Как видно из рисунка, широтная изменчивость среднегодовых величин уходящего излучения проявляется очень слабо. Еще менее выражен годовой ход уходящего излучения. Все ж е эти данные, как и рассмотренные выше результаты, свидетельствуют о наличии двух слабых субтропических максимумов уходящего излучения по обе стороны от экватора, наблюдаемых в августе, сентябре и октябре (одни и те ж е месяцы, несмотря на противоположные фазы сезонов).

Экваториальный минимум уходящего излучения отмечает существование здесь внутритропической зоны конвергенции с повышенной облачностью.

На рис. 92 изображены изоплеты радиационного баланса системы земная поверхность — атмосфера. Поскольку поле уходящего длинноволнового излучения является очень размытым, изоплеты рис.92 подобны изоплетам поглощенной солнечной радиации (рис. 90). Рисунок 92 показывает, что зоны максимума радиационного баланса занимают полосы широт 20—40° в обоих Рис. 91. Изоплеты суточных сумм уходящего длинноволнового излучения (кал/см 2 сутки).

полушариях летом. В пределах широт 20° с. ш.— 15° ю. ш. радиационный баланс положителен в течение всего года.

Сделанные С. Расулом и К- Прабхакара [106] оценки радиационного баланса Земли в целом дали практически нулевое значение. В северном полушарии радиационный баланс к северу • 1018 и и югу от параллели 50° равен соответственно + 81 • 1018 кал/сутки. Для южного полушария аналогичные величины составляют —92,5-Ю 1 8 и + 94,0-Ю 1 8 кал/сутки.

Е. Фовинкель и С. Орвиг [109] получили по данным расчетов поглощенной атмосферой солнечной радиации и уходящего длинноволнового излучения, а также известным величинам радиационного баланса подстилающей поверхности и его компонент значения радиационного баланса атмосферы и системы земная поверхность — атмосфера.

,235 Экстремальные оценки влияния ошибок определения влагосодержания безоблачной атмосферы на результаты расчета поглощения коротковолновой радиации дали значения, не превышающие 4%. Учет поглощения слоистыми облаками осуществлен путем введения поправок, определенных на основе использования данных, известных из литературы. Относительно перистых облаков предполагается, что они не изменяют величин поглощения.

Рис. 92. Изоплеты суточных сумм радиационного баланса земная поверхность — атмосфера (кал/см 2 сутки).

Уходящее длинноволновое излучение вычислено по радиационной номограмме Эльзассера с учетом лишь водяного пара и в предположении об идентичности уходящего излучения и восходящего потока длинноволновой радиации на уровне 300 мб.

Высоты облаков нижнего, среднего и верхнего ярусов приняты равными соответственно 1,2; 4,0 и 5,5 км.

Рассмотрение результатов вычислений годового хода радиационного баланса атмосферы и его компонент для различных пунктов при ясном небе и реальных условиях облачности показало, что основное отличие от годового хода радиационного баланса подстилающей поверхности состоит в гораздо меньшей его амплитуде, что объясняется малостью коротковолновой составляющей баланса по сравнению с устойчивой длинноволновой компонентой. Во всех случаях радиационный баланс атмо-сферы отрицателен, причем наибольшие отрицательные величины наблюдаются поздним летом и осенью, а наименьшие — весной и ранним, летом. Все составляющие баланса имеют максимальные величины летом. Наиболее характерной особенностью является исключительное постоянство в течение года длинноволнового уходящего излучения. Как правило, при наличии облачности отрицательный радиационный баланс атмосферы возрастает, так как увеличивающееся при появлении облаков излучение в сторону земной поверхности не компенсируется воз* растанием поглощенной коротковолновой радиации (противоположная ситуация может иметь место только в условиях очень сухой атмосферы). Необычной особенностью Арктики по сравнению с умеренными широтами является обусловленное инверсиями увеличение уходящего излучения при появлении облаков и, следовательно, возрастание радиационного выхолаживания всей толщи атмосферы. Приходную часть радиационного баланса атмосферы составляет главным образом излучение подстилающей поверхности.

Зональные и меридиональные разрезы величин радиацион* ного баланса системы земная поверхность — атмосфера в основных чертах аналогичны соответствующим разрезам для подстилающей поверхности. Месячные карты географического распре* деления радиационного баланса системы обнаруживают весьма малую широтную изменчивость баланса зимой. Наиболее велики различия для континентов и океанов. В середине зимы максимум радиационного баланса располагается в районе Норвежского моря, к весне он передвигается в зону паковых льдов.

Только поздним летом район максимального выхолаживания оказывается над полюсом. Заметное возрастание меридиональ* ных градиентов радиационного баланса (под влиянием неодно* родности альбедо) наблюдается весной. Летом исчезает типичный для зимы контраст между океаном и континентом. В середине лета и в начале осени региональная и широтная изменчивость баланса сильно сглаживается. В августе и сен* тябре наблюдается довольно простая картина распределения радиационного баланса, отрицательные величины которого убывают от полюса с уменьшением широты.

Наряду с климатологическими данными о радиационном балансе системы земная поверхность — атмосфера и его состав* ляющих представляет интерес получить сведения об изменчивости этих величин. Такого рода сведения, основанные как на обработке данных за четыре витка спутника «Тайрос-Ш» (середина июля 1961 г.), так и на использовании результатов теоретических расчетов, получены П. А. Дэвисом [95]. Отметим, что в этой и других работах (например, [110, 111]) содержатся также интересные данные о радиации как факторе энергетики атмосферы.

,237 В табл. 28 приведены полученные в [95] значения радиационного баланса атмосферы (суммарного лучистого притока тепла ко всей толще атмосферы) и его компонент (длинноволнового лучистого притока тепла и поглощенной солнечной радиации), а также уходящего длинноволнового излучения и отраженной солнечной радиации. Рассмотрение этой таблицы показывает, что изменчивость упомянутых величин сравнительно невелика.

Исключение составляет, однако, отраженная солнечная радиация (уходящее коротковолновое излучение). Ее большая изменчивость обусловлена влиянием неоднородности облачного покрова.

Таблица 28 С р е д н и е з н а ч е н и я и с т а н д а р т н ы е отклонения компонент л у ч и с т о г о притока тепла для всей толщи а т м о с ф е р ы, у х о д я щ е г о д л и н н о в о л н о в о г о излучения и о т р а ж е н н о й солнечной р а д и а ц и и 3-й виток 4-й виток 29-виток 44-й виток j

–  –  –

Значительно большая изменчивость уходящего длинноволнового излучения, чем найденная в работе [95], обнаружена Д. Л. Гергеном [97] по данным подъемов актинометрического радиозонда в 25 точках на территории США в период 26— 30 мая 1959 г. Согласно [97], уходящее длинноволновое излучение изменялось от 15,6 до 26,6 мвт/см 2, т. е. почти вдвое, что определялось главным образом влиянием неоднородности облачного покрова. Интересный пример пространственной изменчивости уходящего излучения в окне прозрачности атмосферы 8—12 мк по данным «Тайроса-III» для 16 июля 1961 г.

рассмотрен авторами работы [98]. Согласно этим данным,,238 эффективная температура (измеренная в окне прозрачности) изменяется в полосе широт 55° с. ш. — 55° ю. ш. от 225 до 300° К и более.

Отрывочность данных, характеризующих изменчивость компонент радиационного баланса системы земная поверхность — атмосфера, определяет необходимость дальнейших исследований в этом направлении.

§ 5. Статистические характеристики радиационного баланса системы земная поверхность — атмосфера Уже сейчас объем данных измерений уходящего излучения при помощи спутников настолько велик, что их полный анализ на «индивидуальной» основе оказывается неосуществимым д а ж е при использовании быстродействующих электронных вычислительных машин. В_связи с этим возникает очень важная проблема поисков статистических методов анализа, которые позволили бы представить и обобщить материалы наблюдений в достаточно компактной форме. Разработка подобных методов представляет интерес и в силу самой сути вопроса, сводящегося к использованию данных об уходящем излучении как поле случайных величин.

В направлении разработки статистических методов анализа спутниковой метеорологической информации пока что предприняты лишь самые первые шаги [2.100, 2.101, 112—114]. Ниже рассматриваются некоторые результаты, заимствованные из работ Е. П. Борисенкова, Ю. П. Доронина и К. Я. Кондратьева [2.100, 2.101], в которых для анализа полей уходящего излучения были применены методы статистической теории турбулентности с целью изучить структуру поля уходящего теплового, излучения.

Стремление исследовать структуру поля теплового излучения Земли определялось, в частности, тем, что строгое решение некоторых вопросов методики наблюдений и объективного анализа поля радиации возможно лишь при знании структурных характеристик исследуемых полей. По данным о структурных характеристиках можно, например, получить суждение о рациональной частоте измерений уходящей радиации с метеорологического спутника. Эти данные могут быть использованы при объективном анализе поля радиации, сопоставлении радиационного поля с полем другого метеорологического элемента, например температуры, и в ряде других задач.

Уже первые опубликованные результаты измерений уходящей радиации, проведенных при помощи метеорологических спутников, дают возможность получить некоторые сведения о структурных характеристиках полей излучения. Несомненно, что эти сведения будут полезны при дальнейшем совершенствовании,239 методики измерений уходящей радиации со спутников и ана* лизе некоторых метеорологических полей.

В работе [2.100] рассматриваются статистические характеристики полей уходящего излучения по данным американского метеорологического спутника «Тайрос-П». В качестве исходных материалов использовались данные измерений радиации со спутника, приведенные в Атласе карт [101].

Метеорологический спутник «Тайрос-П», запущенный 23 ноября 1960 г., был снабжен двумя телекамерами для регистрации облачности, льдов и других наземных объектов и приемниками радиации, предназначенными для измерения уходящей радиации Земли в различных областях спектра. Два широкоугольных приемника использовались для измерения интегральных потоков длинноволновой и коротковолновой радиации в.

пределах угла зрения 50°. Для спектральных измерений применялся пятиканальный радиометр с углом зрения 5°, снабженный светофильтрами для выделения определенных областей спектра. Ширина участков спектра по каждому из пяти каналов следующая:

Канал Участок спектра

–  –  –

В указанном выше Атласе карт приведены результаты измерений радиации по каждому из пяти каналов для 52 орбит при интерполировании в узлы.сетки с шагом 40 миль. Кроме того, данные канала 2 картированы на полярных стереографических картах масштаба 1 :50 000 000 в узлы сетки с шагом 200 миль.

После опубликования данных по радиации были определены добавочные ограничения на использование этих материалов [102].

Из-за неточного определения момента времени измерения радиации и ошибки в определении угла сканирования как функции времени возникает ошибка в географической привязке данных.

Кроме того, имеются ошибки в расшифровке сигналов передач из-за радиотехнических шумов. Особенно сильны искажения сигналов в каналах 3 и 5. Поэтому рекомендовалось данными канала 5 вообще не пользоваться, а данные канала 3 использовать с большой осторожностью. В силу указанных причин в работе [12.100] рассматривались только результаты измерений для каналов 1, 2 и 4. Но и для оставшихся трех каналов ошибки измерений величин уходящего излучения со спутников даже без учета ошибок привязки достаточно велики. Так, по данным дополнения к Атласу [102], средняя ошибка определения величины уходящего излучения в области 6—6,5 мк составляет±0,06 вт/м 2,,240 что соответствует ошибке определения эффективной температуры ± 2 ° (при 7=240° К). Для излучения в диапазоне канала 2 эта ошибка составляет ±1,6 вт/м 2 ( ± 2 ° при 7 = 2 7 0 ° К ). Ошибка определения радиации по каналу 4 равна ±1,7 вт/м 2 ( ± 2 ° при 7 = 260°К). Предельные ошибки определения величины радиации по каналам 1, 2 и 4 соответственно равны ±0,18 вт/м2 ( ± 6 ° при 7=240° К), ± 4 вт/м2 ( ± 5 ° при 7=270° К) и ±5,6 вт/м 2 ( ± 6 ° при 7 = 2 6 0 ° К ). При этом отмечается, что ошибки измерения радиации в полосе поглощения водяного пара (канал 1) могут быть усилены еще некоторыми эффектами, в результате чего предельная ошибка может достигать ±0,2425 вт/м 2 ( ± 8 ° при 7 = 240° К).

Все же, несмотря на целый ряд недостатков в материалах наблюдений, приведенных в Атласе, они позволяют сделать некоторые предварительные заключения о структуре поля радиации.

Обработка материала осуществлена на основе следующих соображений. Выберем на картах Атласа, содержащих данные наблюдений, прямоугольные участки площади с небольшим широтным протяжением, проходящие своими сторонами по узлам регулярной сетки. Для каждого такого поля зафиксируем число столбцов т и строк п, определяющих число узлов, из которых выбирались значения радиации. Если обозначить величину радиации в узле сетки г через F(r), то средняя величина радиации для некоторого поля из т столбцов и п строк будет

–  –  –

Из (3.24) нетрудно видеть, что за счет ошибок наблюдений истинное значение автокорреляционного момента всегда больше kf, полученного на основе данных, содержащих случайную ошибку 8.

Из последней формулы также следует, что при малой величине ошибки е2 по сравнению с дисперсией о2 истинное значение коэффициента автокорреляции мало отличается от рассчитанного. Так, например, для давления на уровне моря s составляет величину порядка 0,1 мб, а а — 10 мб. Естественно, что считаться с такой ошибкой при получении коэффициента автокорреляции не следует. При исследовании же корреляционных моментов полей излучения с этим нельзя не считаться, так как g в лучшем случае отношение — составляет 0,4—0,5, а для отдельных полей е и а сравнимы между собой.

Полученные формулы позволяют несколько исправить структурные и автокорреляционные функции. Заметим, что при данном е с большим доверием следует относиться к тем коэффициентам автокорреляции, которые получены для орбит, имеющих большие величины а, поскольку в этом случае рассчитанные kf(l) ближе к истинным.

Ниже приводятся рассчитанные структурные характеристики полей излучения для каналов 1, 2 и 4, при анализе которых следует учитывать сделанные замечания. Всего был произведен расчет структурных и корреляционных функций по 50 полям излучения, принадлежащим каналу 1, по 56 полям радиации канала 2 и по 62 полям радиации канала 4. Здесь число случаев превышает число орбит, поскольку поля радиации для нескольких орбит разбивались на два района. На рис. 93—95 приведены для указанных полей средние, максимальные и минимальные значения структурных функций и коэффициентов автокорреляции. Все рассматриваемые расчеты выполнены на ЭЦВМ «Урал-2».

Для получения структурных и корреляционных функций на графики наносились значения всех функций для каждого /, подсчйтывалйсь средние значения и по ним проводились линии средних b(l) и k(l). Максимальными, и минимальными Ь{1) и k{l) были просто огибающие полученного поля точек, причем отдельные большие отклонения вычисленных функций в данном поле точек во внимание не принимались.

Для проверки изотропности отмеченных функций были проведены аналогичные расчеты при выборе величин излучения в

–  –  –

узлах, расположенных перпендикулярно к первоначальному направлению. Если первоначально вычислялись структурные функции и автокорреляционные моменты по узлам сетки, расположенным по строкам, то затем эти расчеты проводились по узлам, расположенным по столбцам. Значения полученных функций При расчете по строкам нанесены на рисунках сплошными линиями, при расчете по столбцам —пунктиром. Поскольку в столбце было меньше узлов, чем в строке, результаты последних вычислений обрывались при меньших I. Из рисунков видно, что в среднем изотропность лучше всего выполняется для интегрального излучения и хуже — для излучения в полосе поглощения водяного пара. Для отдельно выбранных полей излучения, как будет видно. в дальнейшем, изотропности излучения может не быть и в области 8—30 мк.

,244 Из рисунков видно, что изменение структурных функций сначала происходит быстро, затем при некоторых I функции практически перестают расти. Будем в дальнейшем обозначать расстояние, начиная с которого Ь} достигает «насыщения», через d.

В среднем для полей излучения по каждому из трех каналов Поток радиации в области 6—6,5 мк практически определяется излучением водяного пара атмосферы с максимумом примерно на уровне 400 мб. Поэтому структурные функции по-^ тока радиации в этой области спектра будут характеризовать пространственную структуру распределения водяного пара и его температуру.

Полученные со спутника «Тайрос-П» величины излучения в области канала 1, как указывалось выше, имеют значительно большие относительные ошибки, чем для радиации каналов 2 и 4. По этой причине к данным канала 1 следует относиться как к весьма ориентировочным. Вероятно, большой разброс точек для поля k\(I) и сравнительно большие отклонения от условий изотропности могут отчасти объясняться малой точностью данных по этому каналу.

Полученные ненормализованные значения структурной функции для каждого I в данном случае, естественно, меньше, чем,245 b2(l) и bi{l) из-за малой абсолютной величины излучения для участка спектра 6—6,5 мк по сравнению с излучением в областях 8—12 и 8—30 мк. Но поле точек Ь\_{1) получается более тесным, чем b 2 (l) и Так, если здесь отношение максимальной величины структурной функции к минимальной (по огибающим линиям) на расстояниях, близких к предельным, составляет величину порядка 7—8, то для b2(d) и Ь^(й) это отношение имеет величину порядка 20. Данный факт может, очевидно,

–  –  –

объясняться тем, что водяной пар более равномерно распределен в пространстве, чем облачность, сильно влияющая на величину и характер структурных функций b2(l) и bi(l). Если рассматривать изменение коэффициента автокорреляции ki[l) с расстоянием, то можно заметить его более медленное убывание, чем для остальных двух каналов. Однако на начальном участке (для /3/г) убывание k\(I) происходит быстрее, чем k2(l) и ki(l). Кроме того, различие между максимальной и минимальной огибающими поля k\(I) значительно больше, чем для каналов 2 и 4. Вероятно, здесь сказывается малая точность полученных значений радиации в этой области спектра.

Из определения структурной функции следует by (0) = 0, поэтому на основании формулы (3.23) получаем bt (0) = 2е 2.

,246 Если проэкстраполировать среднее значение Ьх{1) на рис.93а до / = 0, то получим 2е 2 ~0,006 вт2/м4. Как видно, определенная путем экстраполяции на нуль осредненная ошибка равна средней ошибке измерений излучения, приведенной в дополнении к Атласу [102].

В настоящее время из всех перечисленных пяти участков спектра наибольшее внимание привлекает участок 8—12 мк — атмосферное окно. Фиксируемая спутником радиация в этом участке спектра примерно на 75% обусловливается излучением подстилающей поверхности Земли либо облаками. Таким образом, по этой радиации можно определять температуру поверхности Земли или облаков. Поскольку температура поверхности облачного слоя обычно заметно ниже температуры подстилающей поверхности Земли, то по полю излучения в полосе 8— 12 мк можно судить о распределении облачности и получать представление о барических системах, которые сопровождаются значительной облачностью. Поэтому структурные функции радиации для этой части спектра будут существенным образом зависеть от характера поля облачности. Такая же зависимость должна бы быть и для канала 4. Если сравнить структурные и корреляционные функции излучения по каналам 2 и 4, то видно, что они очень близки друг к другу. Особенно близки между собой средние b 2 (l) и хотя изотропность среднего поля излучения для окна 8—12 мк выполняется несколько хуже, чем для области спектра 8—30 мк. Сравнивая коэффициенты автокорреляции, легко видеть, что связь между излучением в различных точках поля для каналов 2 и 4 затухает примерно одинаково.

Такая согласованность структурных и корреляционных функций излучения по каналам 2 и 4 позволяет сделать попытку перехода от структурных и корреляционных функций полей излучения одного канала к b(l) и k(l) полей излучения другого канала.

На рис.

96 представлен график соотношения между величинами :

структурных функций этих полей излучения для одного выбранного значения /=10А. Связь оказалась линейной, лредставимой уравнением регрессии М*1О) = 0,71М*1О) + 4,67 (3.25) со сравнительно высоким коэффициентом корреляции, равным 0,89. Это подтверждает большую тесноту связи.

Поскольку в среднем поля излучения можно считать изотропными, то на основании формул (3.19) и (3.21) между структурной функцией и коэффициентом автокорреляции при выполнении условия однородности устанавливается однозначная связь bf{l) = 2a)\\-kf(t)\ (3.23) Из выражения (3.26) следует, что усиление связи между значениями исследуемых характеристик приводит к уменьшению,247 структурной функции, а ослабление связи — к ее увеличению.

В частности, если выбрать такие расстояния L, для которых kf(L)~0, то д л я проверки выполнимости этого соW 80г <

–  –  –

Из таблицы видно, что совпадение полученных о 2 0,0118 6—6,5 0,0126 8—12. 20,0 21,90 вполне удовлетворительное, 17,5 8-30 16,85 что подтверждает справедливость положения об изотропности и однородности среднего поля излучения в указанных интервалах спектра.

Рассмотрим далее некоторые приложения полученных структурных характеристик. Поскольку данные наблюдений при картировании интерполируются в узлы регулярной сетки, то естественно встает вопрос об оптимальной частоте измерений радиации со спутника, при которых ошибка интерполяции не превосходила бы заданной. В принятой в США схеме анализа метеорологических полей, вообще, и полей радиации, в частности, до самого последнего времени не учитывалась структура анализируемых полей. Интерполированное значение элемента/ в каждом узле регулярной сетки определялось как средневзвешенное между несколькими величинами, причем весовой множитель без достаточных оснований принимался обратно пропорциональным квадрату расстояния между узлом сетки и точкой, с которой производится интерполяция. Именно такая методика была использована в США при обработке данных о радиации, приведенных в альбоме [101]. При учете структурных или корреляционных функций эта интерполяция могла бы быть более точной.

Если проводить линейную интерполяцию, то, согласно О. А. Дроздову и А. А. Шепелевскому, средний квадрат ошибки интерполяции может быть определен по формуле, приведенной в работе J1. С.

Гандина [103]:

–  –  –

Очевидно, зная структурные характеристики поля радиации, легко установить предельные расстояния, далее которых б ста* новится больше заданной ошибки.

Л. С. Гандин [103] предложил при выборе интерполяционной формулы исходить из условия минимума ошибки интерполяции.

Он ищет интерполированное значение / 0 в виде линейной ком* бинации:

–  –  –

г — расстояние от первого маршрута до последующих. Воспользовавшись приведенными выше структурными функциями и задавшись допустимыми ошибками определения средней величины, при помощи формул (3.38) и (3.39) легко найти рациональные размеры площади, по которой следует проводить осреднение.

Представив, например, структурную функцию излучения в области 8—30 мк в виде ( г ) » (d) [ 1 — ехр (— 0,0758г4/з)] и подставив ее в формулу (3.38), найдем, что для прямоугольной области длиной 20 h и шириной 16 h ошибка определения средней величины излучения примерно равна ошибке единичного измерения.

В перечисленных примерах использовались средние структурные характеристики полей радиации. Однако и структурные характеристики отдельных полей могут быть полезны,252 при некоторых исследованиях. При анализе структурных функций полей излучения была замечена их изменчивость во времени и от района к району. Мы попытались, хотя бы качественно, исследовать зависимость такой изменчивости от состояния термобарического поля атмосферы. При этом предполагалось, что в среднем тип и характер распределения облачности и влажности будут учитываться характером термобарического поля. Чтобы провести такой анализ, районы, для которых вычислялись структурные функции излучения, наносились на карты абсолютной топографии изобарической поверхности 500 мб. Затем проводилось сравнение характера барического рельефа со структурной функцией излучения для данного района. В качестве примера на рис. 97 и 98 приведены барическое поле на поверхности 500 мб 13 декабря 1960 г. и структурные функции излучения для трех районов этого поля. Оказывается, что, чем больше горизонтальная однородность поля, тем меньше величина b^(d) и тем лучше выполняется изотропность излучения. В районе 3 наблюдается наиболее спокойное состояние термобарического поля и ему соответствуют сравнительно малые 6 4 (i)~ 10. Изотропность поля излучения здесь выполняется удовлетворительно. В районах же 2 и 1 термическое поле и барический рельеф неоднородны по горизонтали. Возможно, что этим объясняются большие величины и анизотропность структурных характеристик поля излучения. Особенно велика анизотропность в районе 2. Но здесь, кроме физических причин, возможно, сказывается большая разница в числе узлов по столбцам и строкам рассматриваемой площади. Аналогичное сопоставление структурных функций излучения с термобарическими полями было проведено для пяти дней. В общем, картина получается подобной,253 приведенной выше при анализе как структурных, так и корреляционных функций. Таким образом, даже величина и характер изменения структурных (корреляционных) функций с' расстоянием и выполнимость условий изотропности могут служить в какой-то мере показателем состояния термобарического поля.

Дальнейшие исследования в этом направлении позволят проверить и конкретизировать данное положение.

Значительный интерес представляет определение спектральной плотности полей уходящего излучения, определяющей масштабы наиболее энергетически значимых возмущений. Величины

–  –  –

где k(x) — корреляционная функция, представлены на рис. 99 (исходными материалами для расчета послужили данные измерений при помощи спутников «Тайрос-П» и «Тайрос-III»). На ЭЦВМ «Урал-2» были рассчитаны спектральные плотности с использованием корреляционных функций полей излучения для различных участков спектра. Значения спектральных функций получены для со, соответствующих l=h, 2h,..., причем h для различных спутников различное.

Необходимо при этом заметить, что, поскольку корреляционная функция при / 1 0 h определяется недостаточно надежно, не следует относиться с большим доверием к значениям S{1) при / 1 0.

,254 На рис. 99 г представлены три кривые, характеризующие спектральные плотности поля интегрального уходящего излучения для трех видов корреляционных функций, вычисленных с шагами между узлами сетки, равными 40 милям, 1,25 и 2,5° дуги меридиана. Из этого рисунка следует, что наиболее' вероятные масштабы возмущений поля интегрального уходящего излучения при h = 4 0 милям составляют 350 и 800 км. С учетом пределов колебаний корреляционной функции минимальный масштаб возмущений находится в интервале 200—500 км, а максимальный — в промежутке 600—800 км. Возмущения таких масштабов наблюдаются и в полях других метеорологических элементов, в частности в полях давления и геопотенциала.

Если данные о радиации выбираются из узлов сетки с ша* гом /г = 1,25°, то на рассчитанных с использованием этих данных спектральных функциях (кривая 2) также выявляются два масштаба возмущений, размеры которых составляют 400 и 700 км.

С учетом возможных отклонений корреляционной функции от средних значений масштаб малых возмущений колеблется в пределах 250—500 км, а для крупных — в пределах 700—900 км.

Кроме того, здесь выявляются еще более крупные возмущения, масштаб которых порядка 1100—1700 км.

Нетрудно заметить, что, несмотря на существенное расхождение данных канала 4 для «Тайроса-II» и «Тайроса-Ш», спектральные характеристики возмущений получились довольно близкими между собой. На этом же рисунке приведена кривая, характеризующая спектральную плотность для поля уходящего излучения по данным канала 4 спутника «Тайрос-III» при шаге сетки 2,5°.

Вполне естественно, что в данном случае мы не могли получить спектр возмущений, размеры которых составляют 200 — 500 км, но зато здесь более детально выявляются возмущения, масштаб которых составляет 800—1000 км, и еще более крупные возмущения планетарного масштаба. Размер последних от 1600—2000 до 2500—3500 км.

Поток радиации в области 6—6,5 мк практически определяется излучением водяного пара атмосферы с максимумом на высоте 7—8 км. Поэтому по спектральной плотности этих полей излучения (рис. 99 а) можно судить о том, что масштабы энергетически значимых возмущений имеют порядок величин 400, 700 км, а также 1100—1700 км (кривая 2). Однако кривая 3, характеризующая спектральную плотность излучения по данным «Тайроса-III» при h = 2,5°, имеет только один совпадающий с аналогичной кривой рис. 99 г максимум при / = 8 0 0 км. Далее две кривые почти зеркальны по отношению друг к другу. Весьма странным является отсутствие каких-либо возмущений на кривой спектральной плотности, полученной по данным «Тайроса-II», Зато на кривой 1 рис, 99 6 исключительно четко выявляются максимумы на расстояниях порядка 356 и &00 км. Кроме того, появляются возмущения поля излучения в области атмосферного окна с масштабом около 1500 км. Однако при расчете по данным об излучении с 1г= 1,25° спектральная плотность имеет очень слабое возмущение лишь для 800 км.

Согласно кривой 3, в этом участке спектра несколько выделяются возмущения, имеющие масштаб 1200—1600 км. Вообще на кривой 3 возмущения менее заметны, чем для полей интегрального излучения и излучения водяного пара. Возможно, что это объясняется очень большим влиянием облачных полей, которые должны обусловливать масштаб возмущений в области атмосферного окна. Крупные же возмущения планетарного масштаба наиболее заметны по полям излучения, которые в значительной мере формируются всей толщей тропосферы, т. е. в областях спектра, выделяемых каналами 1 и 4 радиометров.

В области интегральной коротковолновой радиации (рис. 99 в) на кривой 2 заметны возмущения двух масштабов: 500—1000 и 1200—1500 км.

Таков же порядок величин возмущений поля радиации в области канала 5 при использовании данных, выбранных из узлов сетки с шагом 2,5° (кривая 3, рис. 99 5). На этой же кривой выделяется и еще один максимум при 2400 км. По двум другим кривым (кривой 3 на рис. 99 в и кривой 2 на рис. 99 д) выделить масштабы возмущений труднее. На первой заметно выделяются лишь возмущения с 5004-1300 км и с 1500-^-2100 км, а на второй нельзя практически выделить никаких возмущений. Поскольку ошибки в исходных данных измерений радиации для этих двух каналов особенно велики, то естественно было ожидать больших ошибок и в рассчитанной спектральной плотности.

Т а к, например, кривые спектральной плотности для канала 3 при h = 2,5° и канала 5 при h= 1,25°, рассчитанные по максимальной и минимальной огибающим поля коэффициентов автокорреляции, почти зеркальны между собой. Поэтому спектральная плотность, вычисленная по средним k, имеет очень плавный характер.

Подобный спектральный анализ может оказаться весьма полезным при сопоставлении полей излучения, построенных по данным спутника, с полями основных метеорологических элементов, и в частности с полями давления и температуры.

ГЛABA 4

ПОТОКИ У Х О Д Я Щ Е Г О ИЗЛУЧЕНИЯ

НА П О В Е Р Х Н О С Т И Р А З Л И Ч Н Ы Х О Р И Е Н Т А Ц И Я

–  –  –

Задачу настоящей главы составляет исследование прихода радиации от Солнца, Земли и атмосферы на различно ориентированные поверхности, находящиеся на заданной высоте в атмосфере. Эта проблема возникла в связи с появлением искусственных спутников Земли. При решении многих задач, связанных с проектированием искусственных спутников, требуются сведения о приходе излучения от Солнца, Земли и атмосферы на поверхность космического аппарата. Например, проблема теплового баланса искусственных спутников включает задачу определения потоков лучистой энергии, падающих, на поверхность заданной ориентации. Как известно, солнечная энергия является единственно важным внешним источником энергии, опре-' деляющим температуру искусственного спутника [1]. Потоки энергии от Солнца имеют порядок 1000 вт/м 2, энергия от соударения с разными частицами порядка Ю -6 вт/м 2, энергия от метеоритов и метеорной пыли порядка 2 • Ю -5 вт/м 2 и аэродинамическое нагревание на высоте 100 км составляет примерно Ю -4 вт/м 2. В связи с отмеченными обстоятельствами определение величин потоков уходящего излучения на различно ориентированные поверхности, расположенные на определенной высоте в атмосфере, представляет большой интерес.

Решение указанной задачи имеет также большое значение для интерпретации спутниковых измерений уходящего излучения с помощью широкоугольных приемников. Интерпретация спутниковых измерений уходящего излучения является одним из основных моментов в исследовании поля излучения Земли и атмосферы. Одной из задач интерпретации спутниковых измерений является оценка влияния негоризонтальности приемной поверхности приборов на величины измеряемых потоков лучистой энергии.

Расчеты потоков прямой солнечной радиации на различно ориентированные плоские поверхности в атмосфере представляют интерес в связи с использованием гелиоустановок на J 7 Ззк. 359 257 искусственных спутниках. Потоки прямой солнечной радиации на поверхности различных ориентаций вычислять довольно просто, если поверхность находится достаточно высоко над земной поверхностью и можно не учитывать влияние атмосферы на поток солнечной радиации. В таком случае достаточно знать величину солнечной постоянной и угол падения прямых солнечных лучей на заданную поверхность.

Расчеты потоков уходящего длинноволнового и коротковолнового излучения системы Земля — атмосфера могут быть выполнены по данным об угловом распределении интенсивности уходящего излучения. Угловая структура поля уходящего излучения, как длинноволнового, так и коротковолнового, в большинстве случаев существенно неизотропна (см. гл. 1 и 2). Поэтому ясно, что величины потоков уходящего излучения, падающего на плоские поверхности в атмосфере, должны зависеть не только от угла наклона этих поверхностей, но и от их азимута.

В связи с этим необходимо оценить, насколько существенно учитывать азимутальную ориентацию приемной поверхности при различных условиях в атмосфере и на земной поверхности.

Кроме того, поскольку данных об угловом распределении интегральной интенсивности уходящего излучения для реальных условий до настоящего времени еще недостаточно, то представляет интерес определить границы применимости изотропного приближения в поставленной задаче.

Как уже отмечалось выше, в данной главе на основании теоретических расчетов исследуются закономерности изменения величины потока уходящего излучения в зависимости от ориентации приемной поверхности. При этом рассматривается открытая плоская поверхность, соответствующая приемной поверхности прибора с углом зрения, равным 2л. Потоки уходящего излучения рассчитывались для поверхности, находящейся в атмосфере на высоте 300 км над Землей. Ориентация приемной поверхности в пространстве определяется углом поворота (угол между земной вертикалью и нормалью к облучаемой поверхности) и азимутальным углом, отсчитываемым от направления на Солнце.

На высоте 300 км угловой размер Земли составляет 145°30', однако расчеты потоков уходящего излучения проводились в пределах угла, равного 150°, с учетом направлений, соответствующих нижним слоям атмосферы. Видимая с высоты 300 км поверхность Земли по площади составляет около 10 млн. км2.

На такой площади может оказаться весьма значительной горизонтальная неоднородность атмосферы и подстилающей поверхности и, следовательно, угловая структура поля уходящего излучения будет довольно сложной. Поэтому точные величины потоков уходящего излучения на поверхности различных ориентаций могут быть вычислены только по заданному угловому распределению интенсивности уходящего излучения.

,258 Как известно [1.1], поток излучения связан с интенсивностью излучения следующим соотношением:

2я Я/2 ft rf», (4.1) F= J aty J f{§, ф) cos / sin о 0 где /('буф)—интенсивность излучения в направлении, определяемом координатами (вертикальный угол по отношению к надиру) и г|з (азимутальный угол в горизонтальной плоскости);

i — угол падения излучения из направления (Ф, if) на заданную поверхность. Косинус угла падения радиации определяется соотношением cos i — cos a cos & -f- sin a sin & cos cp, (4.2) где a — угол поворота поверхности, отсчитываемый от надира;

Ф — угол на горизонтальной плоскости между азимутом луча и азимутом приемной поверхности. При а = 0 ° приемная поверхность ориентирована горизонтально и нормаль к поверхности направлена к Земле.

Основная трудность вычислений по формуле (4.1) заключена в том, что угловое распределение интенсивности уходящего излучения является существенно неизотропным.

Потоки уходящего излучения на различно ориентированные поверхности рассчитывались путем численного интегрирования по следующей формуле, вытекающей из формулы (4.1) :

^= Ф)С08/ Й Д0 Й. (4.3) k Здесь fh{$, ф)—интенсивность излучения в направлении, определяемом координатами и ар, являющимися центральными для k-roro участка подстилающей поверхности, который «виден» под углом, равным телесному углу AQ^. Число k определяется заданным угловым распределением интенсивности уходящего излучения и равно числу направлений, для которых определена величина интенсивности. Расчеты по формуле (4.3) не представляют принципиальных трудностей, но практически очень громоздки и требуют большого количества времени, поэтому большинство вычислений выполнено на ЭВМ М-20.

По поводу облучения искусственных спутников отраженной от Земли радиацией выполнено несколько теоретических работ [2—5], дающих общие формулы для расчета потока радиации, достигающего поверхности искусственного спутника сферической формы. В упомянутых работах формулы даны для определения потока радиации на всю поверхность сферического спутника. При этом во всех случаях Земля считается правильной сферой, отражающей по закону Ламберта, и планетарное альбедо Земли принимается постоянным. Все упомянутые работы посвящены термическому состоянию искусственных спутников и не дают результатов или методов расчета потоков уходящего излучения на поверхности различных ориентаций. Лишь в работе [5] исследуется освещенность различно ориентированных плоских поверхностей отраженным от Земли солнечным светом. Результаты этой работы будут обсуждены ниже.

§ 2. Потоки уходящего длинноволнового излучения Потоки уходящего длинноволнового излучения могут быть вычислены по данным об угловом распределении интенсивности уходящего излучения. Угловая структура поля уходящего длинноволнового излучения для реальной атмосферы может быть довольно сложной. Как показано в главе 1, характер углового распределения интенсивности уходящего длинноволнового излучения зависит от поля температуры на уровне земной поверхности, от количества и распределения облаков, а также от распределения температуры, влажности и поглощающих субстанций в атмосфере. Поэтому угловое распределение интенсивности уходящего излучения является, как правило, немонотонным и значительно изменяется в зависимости от конкретных условий.

В связи с этим потоки уходящего длинноволнового излучения на поверхности, находящиеся на заданной высоте в атмосфере, зависят от ориентации этих поверхностей.

В настоящей работе потоки уходящего длинноволнового излучения вычислены для двух стратификаций атмосферы на широтах 0 и 65° с. ш., причем на 65° с. ш. расчеты выполнены для летнего и зимнего периодов. Кроме того, вычисления проведены

-для безоблачной атмосферы и для условий сплошной облачности с верхней границей на высотах 3 и 9 км. Соответствующие данные об угловом распределении интегральной интенсивности уходящей длинноволновой радиации получены путем вычислений по радиационным номограммам [1.14; 1.15].

Потоки уходящего излучения вычислены для поверхностей с углом поворота относительно земной вертикали от 0 до 180° через каждые 10°. Ориентация по азимуту в этом случае не рассматривалась, поскольку угловая структура поля уходящей длинноволновой радиации для рассмотренных стратификаций горизонтально однородной атмосферы не имеет азимутальной зависимости. Результаты расчетов потоков (в ваттах на 1 см 2 ) и относительных величин потоков уходящего длинноволнового излучения для интервала длин волн 4,88—120 мк представлены в табл. 30—32, где F& — потоки излучения на поверхности с углом наклона а (угол между нормалью к поверхности и земной вертикалью), F о — поток излучения на горизонтальную поверхность (а = 0), обращенную к Земле. На рис. 100—102 графиче-Ски представлены результаты расчетов потоков интегрального уходящего излучения для всех длин волн без учета поглощения озоном. Относительные величины потоков уходящего излучения определялись как отношение потока на наклонную поверхность к потоку на горизонтальную поверхность. Относительные величины представляют интерес в том смысле, что они более отчетливо и наглядно показывают, насколько радиационный режим различно ориентированных поверхностей отличается от радиационного режима горизонтальной поверхности. Кроме того, относительные величины позволяют провести сравнение между расчетами для реального поля и для изотропного поля уходящего излучения. В табл. 30—32 приведены также относительные величины потоков, вычисленные для изотропного уходящего излучения. Некоторые результаты расчетов были ранее опубликованы в работе авторов [6.] Таблица 30

-2 2 Потоки у х о д я щ е г о длинноволнового излучения ( Ю вт/см ) на поверхности разных ориентаций на высоте 300 км 4,88 мк X 120 мк, у = 0°, лето

–  –  –

100,0 100,0 2,42 100,0 2,26 1,62 100,0 98,7 98.1 2,39 98,8 2,23 1,59 98,5 94,2 93,8 2,28 94.2 2,13 1,52 94,0 2,12 87,6 87,6 87,6 1,98 1,42 87,8 79,6 79,6 1,93 79,8 1,80 1,29 80,2 71,2 71,6 1,72 71,1 1,61 72,0 1,16 61,9 62,3 1.49 61,6 1,40 63.0 1,01 1,26 52,8 52.1 1,19 53,8 0,856 52.6 43,6 1,03 42,6 0,974 44,7 0,707 43.1 0,801 33,1 0,758 35,2 0,554 34.2 33,5 0,613 0,581 0,426 28,1 25.3 25.7 26.3 0,432 0,411 18.2 21,0 0,304 17,8 18,8 0,282 0,270 14,3 0,201 11,6 12.4 11,9 0,163 0,157 8,8 0,118 7,28 6,73 6,94 0,0707 0,0686 4,3 2,92 3,04 0,0526 - 3,25 0,0209 0,0205 1,7 0,863 0,91 0,0162 1,00 0,00063 0,00068 0,3 0,03 0,03 0,00058 0,04

–  –  –

262ности а = 9 0 ° кривая зависимость Fa от а имеет перегиб (рис. 100). Для значений а от 40 до 90° наблюдается практически линейное и наиболее резкое убывание величины потока с ростом угла поворота поверхности. Для всех рассмотренных случаев безоблачной атмосферы величина потока уходящего длинноволнового излучения изменяется при повороте поверхности от 0 до 160° в пределах от 2,50-Ю- 2 до 0,001 • 10"2 вт/см 2.

Для' поверхностей с углом поворота а = 1 7 0 ° величина потока уходящего излучения практически равна нулю. Напомним, что, F-fO'2 вт/см2

–  –  –

кроме уменьшения видимого участка земной поверхности с ростом угла поворота облучаемой поверхности, уменьшается интенсивность уходящего длинноволнового излучения с увеличением надирного угла. В результате величина потока уходящего излучения довольно быстро уменьшается-с ростом угла поворота приемной поверхности.

При сплошной облачности величина уходящего потока радиации тем меньше, чем выше верхняя граница слоя облаков. Кроме того, при сплошной облачности уменьшение потока уходящего излучения с увеличением угла наклона поверхности происходит заметно медленнее, чем при безоблачной атмосфере, что можно видеть из рассмотрения рис. 100. Из рис. 100 видно также, что при сплошной облачности линейный участок кривой зависимости Fa от а меньше, чем при безоблачной атмосфере, причем он уменьшается с ростом высоты, верхней границы облачности.

,263 Величина потока уходящего излучения при сплошной облачности при повороте приемной поверхности от 0 до 160° изменяется от 2,30 • 10~2 до 0,001 • Ю -2 вт/см 2, когда слой облаков на высоте 3 км, и от 1,70-Ю - 2 до 0,0005-Ю - 2 вт/см 2, когда облака на высоте 9 км.

Что касается случая частичной облачности, то приближенно можно считать, что поток уходящего излучения (в зависимости

–  –  –

от характера распределения и высоты облаков) будет изменяться в промежутке между кривой 1 и кривыми 2 и 3 на рис. 100.

Приведенные вычисления позволяют сделать некоторые общие оценки широтной и сезонной изменчивости величин потока уходящего длинноволнового излучения. Можно отметить, что на экваторе величины потоков уходящего излучения при любой ориентации поверхности больше соответствующих величин на 65° с. ш. для безоблачного неба или для одинаковых условий облачности. Как отмечалось выше, расчеты для разных сезонов выполнены только для 65° с. ш. Для безоблачных условий сезонные изменения на. широте 65° оказываются значительно больше широтных изменений в летнее время года. Это отчетливо видно из рассмотрения рис. 101 и 102. На рис. 101 представлены кривые, относящиеся к разным широтам (0 и 65° с. ш.) и к разным сезонам на 65° с. ш. для условий-безобЛачной атмосферы. На рис. 102 приведены подобные крйвЫё для условий сплошной облачности на двух высотах. При сплошной облачности на высоте 3 км наблюдается такой же характер сезонных и широтных изменений, как и для безоблачной атмосферы. При сплошной облачности на высоте 9 км сезонные и широтные -изменения оказываются одинакового порядка. Полученные данные позволяют также заметить, что в летний период облака оказывают большее влияние на величины потоков уходящего излучения по сравнению с зимним периодом.

–  –  –

Из представленных в таблице данных можно видеть, что характер зависимости относительных величин потоков радиации от угла поворота поверхности при безоблачной атмосфере оказывается таким же, как и для условий сплошной облачности, и, кроме того, одинаков для всех рассмотренных случаев. Таким образом, зависимость относительных величин потоков уходящего длинноволнового излучения от угла наклона поверхности является практически универсальной и, как видно, мало отличается от такой же зависимости, вычисленной для изотропного уходящего излучения. Заметные различия между реальными и изотропными относительными потоками наблюдаются лишь в тех случаях, когда угол поворота поверхности больше 90°. Поэтому для приближенных расчетов относительных величин потоков уходящего длинноволнового излучения на различно ориЗак. 359 ентированные поверхности в атмосфере можно пользоваться изотропным приближением. Необходимо, однако, дополнительное исследование случая частичной, горизонтально неоднородно распределенной облачности. Очевидно, что в этом случае зависимость относительных величин потоков от угла наклона поверхности будет значительно более изменчивой, чем в условиях безоблачного неба или сплошной облачности. При частичной облачности в определенных случаях относительные потоки могут быть больше единицы (FJF01, если поверхность ориентирована в сторону открытого участка земной поверхности, а облака расположены под спутником).

Представляет интерес оценить влияние азимутальной ориентации приемной поверхности на приход длинноволнового излучения при наличии частичной облачности. Используя имеющиеся данные об угловом распределении интенсивности уходящего длинноволнового излучения для безоблачной атмосферы и для сплошной облачности, можно искусственно моделировать поле уходящего излучения для случая частичной облачности, взяв половину поля излучения по расчетам для безоблачной атмосферы и другую половину по расчетам для сплошной облачности. В реальных условиях может представиться и такой случай, когда примерно половина видимого участка земной поверхности покрыта сплошным слоем облаков. При таком,распределении облачности влияние азимутальной ориентации приемной поверхности должно быть наиболее существенным. Интересно оценить, насколько существенно будут различаться величины потоков уходящего длинноволнового излучения, падающих на поверхности с одинаковым углом наклона и противоположными азимутами. В связи с этим были выполнены расчеты потоков уходящего излучения на различно ориентированные поверхности по искусственно моделированному полю уходящего длинноволнового излучения при частичной облачности. Необходимо помнить, что такие расчеты дают лишь приближенные качественные оценки. В реальных условиях присутствие частичной облачности должно повлиять на стратификацию атмосферы в.

прилегающих безоблачных районах, так же как и наличие больших просветов должно влиять на стратификацию атмосферы в надоблачном слое.

Результаты упомянутых модельных расчетов представлены на рис. 103 и 104 и в табл. 33. Расчеты выполнены для двух широт (0 и 65° с. ш.) при условии, когда половина видимого участка земной поверхности покрыта слоем облаков на высотах 3 и 9 км. Поверхности с различным углом поворота ориентировались в сторону облачного покрова (а[) = 0°) и в противоположную сторону, к открытому участку земной поверхности (о[з=180°). На рисунках схематически показано расположение облачного покрова над видимым с высоты 300 км участком,266 F/r 0 % Рис. 103. Относительные величины потоков уходящего длинноволнового излучения на поверхности различных ориентаций при частичной облачности (ф == 0°).

1 — высота облаков 3 км, 2— высота облаков 9 км, 3 — изотропная кривая.

F/F0 % Рис. 104. Относительные величины потоков уходящего длинноволнового излучения на поверхности различных ориентаций при частичной облачности (ф = 65° с. ш., лето).

Усл. обозначения см, рис. 103.

–  –  –

земной поверхности. Заштрихованная половина поля зрения соответствует облачному слою, расположенному на заданной высоте. Естественно ожидать, что приемные поверхности, обращенные в сторону облачного покрова, получат длинноволнового излучения меньше, чем поверхности, обращенные к открытой Земле. Как видно из полученных данных, при облаках на высоте 3 км азимутальная ориентация приемной поверхности незначительно влияет на приход длинноволнового излучения.

Различия между величинами потоков уходящего длинноволнового излучения на поверхности с одинаковым углом поворота а и противоположными азимутами в такем случае достигают 3—5%. При облаках на высоте 9 км влияние азимутальной ориентации оказывается более существенным. Различия между величинами Fa для поверхностей с одинаковыми а и противоположными азимутами в этом случае достигают 20%. При этом следует заметить, что упомянутые различия наблюдаются для поверхностей с углом наклона от 40 до 90°.

Относительные величины потоков уходящего длинноволнового излучения на различные поверхности для одинаковых условий облачности на разных широтах оказываются очень близкими.

Результаты расчетов показывают, что для поверхностей с углом поворота до 25° потоки уходящего излучения изменяются не более чем на 10% по сравнению с потоком на горизонтальную поверхность. Начиная с угла поворота а = 30° относительные потоки уходящего излучения убывают с ростом угла поворота поверхности практически,линейно. Вертикально ориентированные поверхности получают около 34% потока излучения, падающего на горизонтальную поверхность.

На основании выполненных расчетов потоков уходящего длинноволнового излучения можно приближенно оценить угловой размер конуса (с вершиной на приемной поверхности), в пределах которого заключена определенная часть потока излучения от Земли и атмосферы, падающего на заданную поверхность. Величина угла, в пределах которого заключено 90% потока, падающего на поверхность различных ориентаций, составляет примерно 60°. Лишь для поверхностей с углом поворота от 70 до 90° угловой размер конуса (или так называемой эффективной зоны) составляет примерно 70°. Величина эффективной зоны, в пределах которой заключено 50% потока уходящего длинноволнового излучения, составляет примерно 30° для поверхностей с углом поворота а до 70° и 45—50° для поверхностей с углом поворота от 70 до 90°. Д л я поверхностей с углом поворота ос90° подобные оценки не производились, так как такие поверхности уже не «видят» центрального участка подстилающей поверхности, расположенной под спутником.

Основным результатом теоретических расчетов, представленных в этом параграфе, является определение зависимости величины потока уходящего длинноволнового излучения от угла поворота приемной поверхности, расположенной в атмосфере на высоте 300 км. Выполненные расчеты показали, что зависимость величины потока уходящего излучения от угла поворота поверхности имеет качественно одинаковый характер как для безоблачной атмосферы, так и для условий сплошной облачности при условии горизонтально однородной атмосферы. Очевидно, что при частичной и неравномерно распределенной облачности зависимость потока уходящего излучения от ориентации приемной поверхности будет значительно сложнее, поскольку приход излучения будет зависеть не только от угла поворота, но и от азимута поверхности. Полученные данные позволили также установить возможность использования изотропного приближения для определения относительных величин потоков уходящего излучения при горизонтально однородной атмосфере.

§ 3. Потоки уходящего коротковолнового излучения Потоки уходящего коротковолнового излучения, как и длинноволнового, рассчитываются по угловому распределению интенсивности излучения. Теоретические исследования угловой,269 структуры поля уходящего коротковолнового излучения, рассмотренные в главе 2, показали, что для различных моделей атмосферы это излучение существенно неизотропно. Для реальной атмосферы следует ожидать значительно большей неизотропности. Угловое распределение интенсивности уходящего коротковолнового излучения может быть довольно сложным в зависимости от распределения облаков.над рассматриваемым участком земной поверхности, альбедо поверхности, от условий освещения поверхности Земли и атмосферы прямой солнечной радиацией, а также от оптических свойств атмосферы. Поэтому величина потока уходящего излучения, падающего на поверхность, находящуюся в атмосфере, в значительной степени зависит от ориентации этой поверхности. Потоки уходящего коротковолнового излучения на поверхности различных ориентаций рассчитывались по угловому распределению интенсивности излучения, определенному теоретически [2.63]. В упомянутой работе вычислено поле уходящего коротковолнового излучения для плоскопараллельной, горизонтально однородной атмосферы. При этом предполагается, что земная поверхность отражает по закону Ламберта. Коэффициент рассеяния и индикатриса рассеяния считаются заданными. Атмосфера разбивается на два слоя, в каждом из которых индикатриса рассеяния предполагается постоянной. Расчеты интенсивности радиации выполнены для разных значений зенитного расстояния Солнца, альбедо подстилающей поверхности и оптической толщины атмосферы. Рассматриваемый участок земной поверхности и атмосферы считается полностью освещенным, а альбедо поверхности — однородным.

Потоки уходящего излучения для различных поверхностей вычислялись в пределах телесного угла, под которым видна Земля и нижние слои атмосферы (до 40 км) с высоты 300 км.

Поэтому предельный надирный угол для крайнего луча, попадающего на поверхность, взят равным 73°50', как отмечалось уже в § 1. Интенсивность излучения в направлениях с большим надирным углом не учитывается, в результате чего несколько уменьшается ошибка, возникающая при использовании плоской модели атмосферы.

Потоки уходящего коротковолнового излучения при безоблачной атмосфере рассчитаны для поверхностей с различным углом поворота от 0 до 180°, ориентированных в сторону Солнца и в противоположную сторону. Таким образом, получены потоки излучения на поверхности при полном повороте от 0 до 360°. Для сравнительного анализа удобнее разделить поверхности на две группы с азимутами -ф = 0° и if)=180° относительно Солнца. Значения*, основных оптических параметров выбраны следующими: зенитное расстояние Солнца 2© =30, 60 и 75°; оптическая толщина атмосферы т = 0,2; 0,4 и 0,8; альбедо подстилающей поверхности Л = 0,1; 0,3 и 0,8. Потоки радиации рассчитывались при значении солнечной постоянной, равном 2,0 кал/см 2 мин. (0,1394 вт/см 2 ).

Таблица 34

-2 2 Потоки у х о д я щ е г о коротковолнового излучения ( Ю вт/см ) на поверхности разных ориентаций на высоте 300 км Оптическая толщина атмосферы т * = 0,8 Альбедо подстилающей поверхности А = 0,1

–  –  –

8,19 100 2,23 100 8,06 98,4 2,21 2,17 8,08 99,1 97,3 98,6 98,5 87,7 2,06 1,92 7,19 7,24 88,4 92.3 86.3 " 87,8 1,61 1,78 80,0 5.85 71,4 72,8 72.4 72.0 5,96 1,25 1,43 4,37 54,3 64.0 53,4 56,2 53,8 4,45 0,830 0,984 33,8 2,77 2,72 33,2 44.1 37.2 35.2 0,678 28.1 0,815 26,8 26,4 36,6 2,16 2,19 30.4 21,0 0,520 0,634 19,8 1,60 28.4 19,5 1,62 23.3 0,350 0,456 13,3 1,08 20.5 13,2 1,09 15,7 14.3 0,234 8,0 0,296 0,656 0,658 8,0 13,3 10.5 8,8 0,121 0,162 3,8 0,317 0,314 7,3 3,9 5,4 4,3 2,2 0,0497 1,4 0,0688 0,118 3,1 0,122 1,7 1,5 0,6 0,0089 0,0142 0,3 0,0208 0,0218 0,4 0,3 0,3

–  –  –

:30° * = 6О° 100,0 100,0 100,0 2,47 3,92 98,9 2.44 98.7 98,5 3,85 98.2 3,88 2,43 98,3 94,9 2,35 94,9 94,0 3,67 93.7 3,72 94.1 2,33 88,6 89,3 2,22 89.4 87,8 3,42 87,4 3,50 2,19 82,1 2,05 80,2 3,12 3,21 82.8 81,9 79.8 2,03 74,3 72,0 2,81 2,91 75,7 74,8 1,88 71.7 1,85 65,3 1,67 2,45 2,56 62,6 67.4 1,64 66.5 63.0 55,8 2,18 2,08 58,7 57.6 53,8 53.3 1.45 1,42 1,70 1,78 49,0 47,8 44,7 45.5 1,21 43.3 1,18 1,28 1,35 0,955 34.6 38.5 37.2 32.8 0,920 35.2 1,03 1,09 28.1 0,788 27.7 31,7 0,753 30.3 26.4 21,0 0,781 0,815 20.8 0,610 0,574 24.6 23.2 19.9 0,537 0,556 0,437 14,2 17.7 0,404 16.3 13,7 14.3 0,336 0,344 0,285 11,5 8,8 10.4 0,256 8,8 8,6 0,170 0,169 0,152 5,3 4,3 4,3 4,3 0,132 6.1 0,066 2,2 0,069 0,065 1,7 1,7 0,054 2,6 1,8 0,012 0,013 0,010 0,013 0,4 0,3 0,3 0,3 0,5 нения полученных данных можно заметить, что потоки уходящего коротковолнового излучения уменьшаются с ростом угла поворота при малых значениях альбедо несколько медленнее, чем потоки длинноволнового излучения. Это, очевидно, связано с тем, что интенсивность уходящего коротковолнового излучения в большинстве случаев увеличивается с ростом надирного угла (т. е. к краю видимого участка Земли), тогда как интенсивность длинноволнового уходящего излучения уменьшается с ростом надирного угла. Наиболее резко уменьшается поток D-10'2 вт/см2

–  –  –

уходящего коротковолнового излучения с ростом угла а при больших значениях альбедо земной поверхности и малых зенитных расстояниях Солнца (см. рис. 106 и табл. 35). Быстрое уменьшение величины потока уходящего излучения с ростом а в этом случае связано с тем, что при больших значениях альбедо земной поверхности и малых зенитных расстояниях Солнца интенсивность уходящего коротковолнового излучения уменьшается с ростом надирного угла. Изменение азимутальной ориентации приемной поверхности наиболее существенно влияет на приход излучения при больших зенитных расстояниях Солнца и при малых значениях альбедо подстилающей поверхности (см. рис. 105 и табл.34), т. е. в таких случаях, когда угловая структура поля уходящего коротковолнового излучения наиболее сильно отличается от изотропной. При небольших зенитных расстояниях Солнца и больших значениях альбедо поверхности ориентация поверхностей по различным азимутам почти не влияет на приход излучения. Как показывают результаты вычислений, потоки уходящего излучения на,273 поверхности различных ориентаций зависят от азимута в значительно меньшей степени, чем от угла наклона поверхности и зенитного расстояния Солнца.

Из сопоставления всех полученных данных можно видеть^ что величины потоков уходящего коротковолнового излучения О • Ю ~2 вт/см2 Рис. 106. Потоки уходящего коротковолнового излучения на поверхности различных ориентаций.

т = 0.2; А = 0,8.

/) ф = 0°, 2) ф = 180°.

существенно изменяются в зависимости от зенитного расстояния Солнца, оптической толщины атмосферы и альбедо подстилающей поверхности. С ростом оптической толщины атмосферы (при неизменном зенитном расстоянии Солнца и небольших значениях альбедо) потоки уходящего коротковолнового излучения увеличиваются. При больших значениях альбедо поверхности и неизменном зенитном расстоянии Солнца потоки уходящего излучения уменьшаются с ростом оптической толщины атмосферы. Такие результаты объясняются влиянием атмосферной дымки, увеличивающей альбедо системы земная поверхность— атмосфера при малом альбедо подстилающей поверхности и уменьшающей альбедо системы при большом альбедо подстилающей поверхности. Как видно из приведенных данных, при z o = 3 0 ° и постоянном значении т потоки уходящего коротковолнового излучения увеличиваются в 5—6 раз с ростом альбедо подстилающей поверхности от 0,1 до 0,8. При г© = 75° и по

–  –  –

Рис. 107. Изменение коэффициента освещенности плоской поверхности на высоте Н = 160 км в зависимости от ориентации поверхности и зенитного расстояния Солнца.

стоянном значении т за счет такого же роста альбедо потоки увеличиваются в 2—3 раза, причем можно отметить, что влияние альбедо тем заметнее, чем меньше оптическая толщина атмосферы. За счет увеличения зенитного расстояния от 30 до 75° (при заданной оптической толщине атмосферы) потоки уходящего излучения уменьшаются в 3—4 раза при значении А = 0,8 и почти в 2 раза при Л = 0,1. Таким образом, наиболее существенные изменения величины потока уходящего коротковолнового излучения происходят за счет изменения альбедо земной поверхности при небольших зенитных расстояниях Солнца.

Приведенные результаты расчетов качественно согласуются с~расчетами освещенности поверхности космического аппарата уходящим коротковолновым излучением [5]. Эти расчеты были выполнены для плоской произвольно ориентированной поверхности, находящейся на различных высотах в атмосфере. При расчетах предполагалось, что земная поверхность, освещенная Солнцем, представляет собой полусферу и подобна излучателю,,275 подчиняющемуся закону Ламберта. Альбедо земной поверхности принято постоянным. На рис. 107 и 108 приведены кривые изменения коэффициента освещенности поверхности в зависимости от изменения угла поворота поверхности (угол между земной вертикалью и нормалью к поверхности), зенитного расПО <

–  –  –

стояния Солнца и высоты над земной поверхностью. Коэффициент освещенности F определялся из следующего выражения:

Е — aEsF, где Е — освещенность поверхности космического аппарата, Дз — освещенность земной поверхности в ближайшей к Солнцу точке, а — альбедо Земли. Расчеты представлены для двух азимутов поверхностей (ф = 0° и 1|з=180°), причем величины освещенности для поверхностей с op = 180° нанесены для отрицательных значений угла поворота а (угол отсчитывается от надира).

Приведенные кривые показывают, что с увеличением угла поворота поверхности освещенность монотонно убывает. Наибольшие величины освещенности наблюдаются при 2 о = 0 °. Для поверхностей с азимутом ф = 0° освещенность несколько больше, чем для поверхностей с ф=180°; с ростом зенитного расстояния Солнца азимутальные различия увеличиваются. Азимутальная ориентировка оказывает наименьшее влияние на освещенность по сравнению с углом поворота, зенитным расстоянием Солнца и высотой над земной поверхностью. Из графиков следует также, что освещенность является убывающей функцией высоты,276 Относительные величины потоков уходящего коротковолнового излучения, полученные в настоящей работе, представлены, как у ж е упоминалось, в табл. 34—36 и на рис. 109 и 110. На основании результатов вычислений можно сделать вывод, что при больших значениях альбедо земной поверхности и малых зенитных расстояниях Солнца относительные величины потоков

–  –  –

сравнительно мало отличаются от изотропных величин. Заметные различия наблюдаются при малых альбедо и больших зенитных расстояниях Солнца (рис. 109, табл. 34). Следовательно, для расчета относительных величин потоков уходящего излучения на различно ориентированные поверхности изотропным приближением можно пользоваться при 2 0 ;ЗО О и 0,8. Кроме того, необходимо помнить, что приведенные здесь расчеты выполнены для плоскопараллельной, горизонтально однородной аэрозольной атмосферы при однородной и равномерно освещенной подстилающей поверхности. Д л я реальной атмосферы в большинстве случаев следует ожидать заметных различий между потоками, рассчитанными по угловому распределению интенсивности уходящего излучения и по изотропному приближению. Аналогичные расчеты потоков и относительных величин потоков уходящего коротковолнового излучения на поверхности различных ориентаций были выполнены т а к ж е для условий релеевской атмосферы. Д а н н ы е об угловом распределении,277 интенсивности уходящего коротковолнового излучения Для релеевской плоскопараллельной атмосферы взяты из работы [2.24]. В упомянутой работе выполнены обширные расчеты интенсивности уходящего коротковолнового излучения для различных значений зенитного расстояния Солнца, оптической толщины атмосферы и альбедо подстилающей поверхности. Относительные величины потоков уходящего коротковолнового излучения, вы

–  –  –

численные по этим данным, представлены на рис..111 — 114. К а к видно из графиков, характер зависимости относительных величин потоков DJDo от угла наклона а и азимута приемной поверхности получен в этом случае таким же, как и по данным работы [2.63]. Можно видеть, что с ростом зенитного расстояния Солнца и оптической толщины атмосферы влияние азимутальной ориентации становится более значительным. С увеличением альбедо подстилающей поверхности влияние азимутальной ориентации на приход коротковолновой радиации уменьшается.

Пунктиром на рисунках нанесена кривая зависимости относительных величин потоков от угла наклона поверхности для изотропного излучения. Сравнение кривых показывает, что в большинстве случаев величины DJD0, рассчитанные по заданному угловому распределению, заметно отличаются от соответствующих величин, рассчитанных для изотропного излучения.

Естественно ожидать, что при наличии в атмосфере облаков границы" применимости изотропного приближения будут 27.

Wo %

–  –  –

Рис. 114. Относительные величины потоков уходящего коротковолнового излучения для поверхностей различных ориентаций. х = 1,00; А = 0,80.

Усл. обозначения см. рис. 111.

значительно более узкими. Очевидно, что при частичной облачности зависимость величины потока уходящего излучения от ориентации приемной поверхности будет значительно более сложной, чем в условиях безоблачного неба или при сплошной облачности.

Д л я интерпретации спутниковых измерений радиации необходимо иметь сведения о влиянии частичной облачности и неоднородности альбедо подстилающей поверхности на облучение уходящей радиацией различно ориентированных поверхностей в атмосфере. Т а к а я задача решается в настоящей работе на основе рассмотрения случая неоднородного альбедо поверхности, находящейся в поле зрения прибора, расположенного в атмосфере на высоте 300 км. Видимая площадь земной поверхности составляет около 10 млн. км 2. В поле зрения прибора может наблюдаться разнообразное сочетание участков поверхностей с различным альбедо. Д л я расчета потоков уходящего коротковолнового излучения от пестрой поверхности необходимо располагать данными об угловой структуре поля уходящего излучения при частичной облачности или при неоднородном альбедо поверхности. Подобных данных до настоящего времени в литературе нет. Поэтому были использованы результаты теоретических расчетов [2.63], выполненных для разных условий в атмосфере при однородном альбедо подстилающей поверхности. Путем комбинации имеющихся данных можно моделировать поле уходящего коротковолнового излучения для поверхности, состоящей из участков с различным альбедо. С точки зрения предельных оценок представляет интерес подобрать возможно более резкий контраст между..отдельными участками земной поверхности, попадающими одновременно в поле зрения прибора.

Расчеты потоков уходящего коротковолнового излучения выполнены для поверхности, отдельные участки которой имеют величины альбедо 0,1 и 0,8 (в долях единицы). Если считать, что облака о т р а ж а ю т так же, как чистый снег, и принять альбедо облаков равным 0,8, то можно думать, что такие данные позволяют приближенно оценить влияние частичной облачности на облучение различно ориентированных плоских поверхностей уходящей коротковолновой радиацией. В действительности ири частичной облачности отражающие солнечную радиацию поверхности находятся на разных уровнях над земной поверхностью. Верхняя граница облачного слоя может достигать высоты 15 км. В таком случае реальное угловое распределение интенсивности коротковолновой уходящей радиации должно быть более неравномерным, чем для выбранной модели, т а к к а к отр а ж е н н а я облаками солнечная радиация не ослабляется самым нижним слоем атмосферы. Следовательно, в реальном случае влияние ориентации поверхности на приход излучения от Земли и атмосферы будет еще более существенным.

,281

• При частичной облачности поток уходящего коротковолнового излучения на поверхность заданной ориентации зависит не только от количества облаков, но и от их распределения над рассматриваемым участком земной поверхности. Поэтому для оценки влияния неоднородности альбедо поверхности или частичной облачности необходимо.иметь достаточно большое количество данных для различных конкретных ситуаций. В настоящей работе рассмотрено лишь семь различных случаев распределения отдельных участков земной поверхности с разным Таблица 37 Потоки (10"" вт/см ) у х о д я щ е г о коротковолнового излучения на поверхности различных ориентаций при частичной облачности Облачная зона: 0° в 90°; 112,5° f 247,5°

–  –  –

6,08 1,87 1,87 0 6,16 1,96 6,29 1,92 1,77 10 5,69 6,48 5,66 1,72 20 1,99 6,32 1,92 1,69 5,14 6,61 5,01 1,54 6,20 1,98 1,89 1,46 30 4,52 6,55 4,29 1,34 альбедо. П р и этом Для каждого случая расчеты выполнены при двух значениях зенитного расстояния Солнца (30 и 75°) и двух значениях оптической толщины атмосферы (т = 0,2 и т = 0,8).

Потоки уходящего излучения вычислены для поверхностей с углом наклона от 0 до 180° (через 10°), ориентированных по азимутам 0 и 180° относительно азимута Солнца. Результаты расчетов представлены на рис. 115—118 и в табл. 37—43. В табл.

37—40 даны величины потоков (в вт/см 2 ), для значений а до Таблица 39 Потоки ( Ю - 2 вт/см 2 ) у х о д я щ е г о коротковолнового излучения на поверхности различных ориентаций при частичной облачности Облачная зона: 0° 6 90°; 22,5° -ф 112,5°; 247,5° 1| 337,5°

–  –  –

Т = 0,8 1,00 1,00 5,64 1,00 1,81 1,00 5,54 0,98 0,99 1.78 0,99 5,56 1,80 0,98 5,30 0,94 0,95 0,97 1,65 0,92 5,33 1,76 0,94 0,88' 4,97 0,88 0,89 0,94 1,54 0,86 5,02 1,69 0,80 4,57 0,83 0,89 1,44 4,66 1,60 0,80 0,81 4,24 0,75 0,77 0,84 1,34 0,74 4,32 1,50 0,72 0,68 3,86 0,68 0,70 0,78 1,22 3,94 1,40 0,63 3,44 0,61 0,62 0,70 1,09 0,61 3,52 1,27 0,54 2,95 0,52 0,53 0,62 0,98 0,52 3,01 0,45 1,11 2,38 0,42 0,43 0,51 0,77 0,43 2,42 0,93 0,35

–  –  –

= 0,2 Х 5,27 1,00 1,00 0 1,66 0,97 1,62 5,06 0,96 1,00 10 5,19 0,99 1,65 0,92 1,53 4,94 0,94 0,97 20 4,90 0,93 1,60 0,86 1,42 4,57 0,87 0,92 30 4,62 0,88 1,52 0,79 1,31 4,18 0,79 0,86 40 4,23 0,80 1,42 0,72 1,20 3,80 0,72 0,80 50 3,86 0,73 1,32 0,64 1,07 0,63 0,72 60 3,44 0,65 1,19 3.32 0,55 0,91 0,54 0,64 70 2,90 0,55 1,05 2,83 0,49 0,81 0,44 0,54 80 2,38 0,45 0,90 2.33 0,37 0,61 0,26 0,45 90 1,83 0,35 0,75 1,39

–  –  –

Рис. 118. Относительные потоки уходящего коротковолнового излучения на поверхности различных ориентаций при неоднородном альбедо.

Усл. обозначения с ц. рис. 115.

рованная поверхность. Относительные величины потоков во многих случаях оказываются довольно близкими к соответствующим величинам для изотропной уходящей радиации. На основании данных вычислений можно сделать вывод, что при симметрично распределенной частичной облачности для приближенных оценок относительных величин потоков уходящего излучения можно пользоваться изотропной кривой при небольших зенитных расстояниях Солнца и для поверхностей с углом поворота а 5 0 °. В случае несимметрично распределенной облачности необходимо учитывать как угол поворота, так и азимут приемной поверхности. Изотропное приближение при этом совершенно неприменимо.

Некоторые результаты, изложенные в этом параграфе, опубликованы ранее в работах авторов [7, 8, 9].

§ 4. Суммарные потоки уходящей радиации На поверхность космического аппарата может попадать одновременно прямая солнечная радиация, коротковолновая радиация, отраженная от земной поверхности и атмосферы, и длинноволновое излучение земной поверхности и атмосферы.

Поэтому представляет интерес определить величину суммарного потока уходящего излучения, падающего на различно ориентированные поверхности в атмосфере.

Потоки прямой солнечной радиации на различно ориентированные поверхности, расположенные в атмосфере на высоте 300 км, вычислены для различных зенитных расстояний Солнца при значении солнечной постоянной, равной 0,1395 вт/см 2. Д л я поверхностей, находящихся на высоте 300 км, предельное зенитное расстояние Солнца, при котором прямые лучи еще попадают на приемную поверхность, составляет 107°. В настоящей работе рассчитаны внеатмосферные значения потоков прямой солнечной радиации. Если для зенитных расстояний Солнца, меньших 90°, это можно считать приемлемым, поскольку поверхность расположена на высоте 300 км, то для г© 9 0 ° при расчетах потоков солнечной радиации следовало бы учитывать влияние атмосферы, так как при 2© 9 0 ° лучи Солнца, попадающие на приемную поверхность, проходят через нижние слои атмосферы. Но в данном случае это обстоятельство несущественно, поскольку в дальнейшем суммарные, потоки вычислялись лишь для z© 90°.

Расчеты потоков прямой солнечной радиации выполнены для поверхностей с углом поворота от 0 до 180° (через 10°), ориентированных в сторону Солнца (я|5 = 0°) и в противоположную сторону (ф=180 й ), т. е. для полного оборота поверхности на 360°а Напомним, что значение а = 0° соответствует горизонтально ориентированной поверхности, направленной к Земле приемной частью. Угол поворота поверхности отсчитывается от вертикали. Результаты расчетов представлены на рис. 119, где потоки

–  –  –

прямой солнечной радиации даны в вт/см 2. Кривые зависимости величины потока от угла поворота и азимута поверхности показывают, при каких ориентация* п р я м а я солнечная радиация не попадает на приемную поверхность. Например, при zQ = 3 0 ° солнечную радиацию получают поверхности при а 6 0 °, ^ = 0° и при а 1 2 0 °, г|з= 180°. Максимальное значение потока прямой,291 солнечной р а д и а ц и и - и м е е т место д л я поверхностей, ориентированных перпендикулярно к солнечным лучам, и равно по величине принятой солнечной постоянной. Ориентация поверхности, соответствующая м а к с и м а л ь н о м у приходу прямой солнечной радиации, определяется д л я принятой здесь систёмы отсчета сле

–  –  –

дующими значениями угла поворота и азимута: а Ш а х = 1 8 0 о — —2©, г|) = 0°. Из рис. 119 м о ж н о видеть, к а к быстро в о з р а с т а е т поток прямой солнечной р а д и а ц и и с уменьшением угла падения лучей на приемную поверхность.

Используя данные вычислений потоков у х о д я щ е г о длинноволнового и коротковолнового излучения, а т а к ж е потоков прямой солнечной радиации, можем определить с у м м а р н ы е потоки радиации, п а д а ю щ и е на различно ориентированные поверхности в атмосфере. Поскольку внеатмосферные значения потоков прямой солнечной р а д и а ц и и не с в я з а н ы со с т р а т и ф и к а ц и е й атмосферы или ее оптическими свойствами, при суммировании пото-.

ков уходящего излучения с потоками солнечной р а д и а ц и и следует учитывать л и ш ь зенитное расстояние Солнца.

,292 Результаты вычислений суммарных потоков радиации на поверхности различных ориентаций при безоблачной атмосфере представлены в табл. 44—48 и на рис. 120—121. К а к видно из приведенных данных, для суммарного потока радиации не наблюдается монотонного убывания с ростом угла поворота поверхности, ориентированной как в сторону Солнца, так и в противоположную сторону. Д л я поверхностей с азимутом if = 0° кривая изменения величины суммарного потока в зависимости от

–  –  –

угла поворота имеет минимум и максимум. Минимум наблюдается при таких значениях угла поворота, начиная с которых, при их дальнейшем увеличении, на приемную поверхность попадает прямая солнечная радиация. Д а л е е с ростом а суммарный поток радиации резко увеличивается, достигая максимума при значениях, а, близких к а т а х - Д л я поверхностей с азимутом

•ф=180° и при 2© 7 5 ° наблюдается минимум суммарного потока при таких ж е условиях, как и для поверхностей с азимутом if = 0°. При зенитных расстояниях Солнца z © 7 5 ° величина суммарного потока на.поверхности с азимутом if =180° монотонно уменьшается с ростом угла поворота поверхности.

,293 Сравнение величин составляющих потоков показывает, что почти во всех случаях, когда прямая радиация Солнца попадает на приемную поверхность, поток прямой радиации заметно больше потоков уходящего длинноволнового и коротковолнового излучения. Лишь в случае больших значений альбедо, земной поверхности и при малых значениях зенитного расстояния Солнца поток уходящего коротковолнового излучения может быть больше потока прямой солнечной радиации для некоторых ориентаций поверхностей при достаточно косом падении солнечных лучей (т. е. для небольших углов поворота).

Соотношение между величинами потоков, уходящего длинноволнового и коротковолнового излучения оказывается весьма различным в зависимости от конкретных условий в атмосфере и на земной поверхности, а т а к ж е от ориентации приемной поверхности. К а к было установлено ранее, потоки уходящего длинноволнового излучения обладают значительно меньшей изменчивостью в зависимости от стратификации атмосферы по сравнению с потоками коротковолнового излучения, изменяющимися весьма значительно в зависимости от величии оптических параметров в атмосфере. Сравнительный анализ полученных данных показывает, что при малых значениях альбедо земной поверхности и оптической толщины атмосферы длинноволновые потоки оказываются больше коротковолновых при любых зенитных расстояниях Солнца и почти для всех ориентаций приемной поверхности (см. табл. 44 и 45). Лишь для поверхностей

–  –  –

1,59 2,47 1,59 4,06 1,57 2,43 1,-54 3,97 2,16 1,39 3,55 1,43 1,75 1,16 2,91 1,23 1,29 0,822 4,53 2,42 0,940 0,822 0,574 8,37 6,97 0,615 0,630 0,467 10,06 8,96 0,498 0,443 0,358 11,48 10,68 0,377 0,290 0,252 12,61 12,07 0,263 0,167 0,160 13,43 13,10 2,42 0,165 0,073 0,085 13,89 13,73 0,084 4,77 0,021 9,036 14,00 13,94 6,97 0,033 0,001 0,007 13,74 13,73 8,96 0,006

–  –  –

2,25 3,05 0,800 3,05 0,800 0,803 0,780 3,02 3,00 2,22 0,773 1,98 0,674 6,36 30 2,65 3,61 0,704 0,580 10,30 50 2,19 7,99 1,61 0,468 13,20 70 1,65 0,600 11,42 1,18 0,443 0,761 0,361 14,66 90 13,46 1,12 0,377 0,584 0,270 14,85 0,854 13,89 0,304 0,414 14,61 0,630 13,89 0,216 0,230 0,273 0,152 13,96 120 0,425 13,46 0,157 0,159 0,105 12,95 130 0,264 12,63 0,091 0,070 0,057 11,58 140 0,127 11,42 0,042 0,024 9,92 150 0,045 9,86 0,021 0,009 0,001 160 7,99 0,006 0,006 8,00 с углом поворота а 1 3 0 ° н а б л ю д а е т с я обратное соотношение, потоки уходящего коротковолнового излучения о к а з ы в а ю т с я больше. Это, очевидно, с в я з а н о с тем, что длинноволновое излучение убывает к к р а ю видимого диска Земли, тогда к а к интенсивность коротковолнового излучения д л я рассматриваемых, условий увеличивается с ростом надирного угла. П р и углах поворота а 1 3 0 ° приемные поверхности получают р а д и а ц и ю от узкой полосы на к р а ю видимого участка Земли.

Т а к о е ж е соотношение потоков н а б л ю д а е т с я при больших значениях зенитного расстояния Солнца и оптической толщины а т м о с ф е р ы и малых величинах альбедо.

П р и больших значениях альбедо подстилающей поверхности и м а л ы х зенитных расстояниях Солнца величины потоков уходящего. коротковолнового излучения значительно больше потоков длинноволнового излучения при любой оптической толщине атмосферы и д л я всех значений угла поворота приемной поверхности (см. т а б л. 46). Д л я больших значений зенитного расстояния Солнца и альбедо земной поверхности и при малой оптической толщине а т м о с ф е р ы т а к ж е н а б л ю д а е т с я п р е о б л а д а н и е ко-, ротковолнового уходящего потока н а д длинноволнрВьШ, но не в т а к о й значительной степени,, к а к в предыдущем случае (табл. 47). При больших зенитных расстояниях Солнца, альбедо земной поверхности и оптической толщине атмосферы или при м а л ы х зенитных расстояниях Солнца, альбедо • земной поверхности и большой оптической толщине атмосферы потоки Т а б л и ц а 48 Суммарные потоки уходящего излучения на поверхности различных ориентаций (10~ 2 вт/см 2 ) г я = 30°, т* = 0,2 А = 0,8

–  –  –

2,08 0 2,49 4,57 2,49 4,57 10 2,05 2,48 4,53 2,44 4,49 30 3,61 1,82 2,27 7,70 2,17 3,99 50 1,81 7,99 1,49 1,93 11,41 3,30 70 11,42 1,10 14,03 1,38 1,51 2,48 90 13,46 0,708 1,60 15,18 0,892 1,01 100 13,89 0,545 15,26" 0,720 0,824 1,26 110 13,89 0,387 14,91 0,546 0,634 0,933 13,46 0,255 14,16 120' 0,378 0,450 0,633 130 12,63 0,149 13,07 0,238 0,387 0,290 140 11,42 0,066 11,64 0,120 0,186 0,154 150 9,86 0,020 9,45 0,047 0,067 0,066 160 0,010 7,99 0,001 0,011 8,00 0,013

–  –  –

2,47 4,97 4,97 2,50 2,50 _ 2,41 2,43 4,84 2,43 4,86 10 — 4,37 4,32 2,16 2,16 2,21 30 — — 3,57 3,63 1,82 1,75 1,88 50 — — 2,42 1.29 1,40 5,11' 2,76 70 1,4-7 — 6,97 8,71 0,918 0,822 0,971 90 1,793 — 8,96 10,34 0,630 0,790 100 0,752 1,420 —,, 10,68 0,443 110 0,573 11,70 1,044 0,601 — 12,07 0,711 0,409 120 12,80 0,290 0,421 — 0,167 130 13,10 2,852 0,263 13,53 2,42 0,265 140 13,73 0,139 13,94 4,77 4,978 0,073 0,135 13,94 6,97 150 0,058 14,02 7,045 0,021 0,054 160 13,73 13,74 0,011 0,002 8,972 8,96 0,010 мой поверхности. Следовательно, д л я интерпретации спутниковых измерений суммарной р а д и а ц и и совершенно необходимо знать ориентацию приемной поверхности прибора в к а ж д ы й момент измерений.

Р а с ч е т ы с у м м а р н ы х потоков излучения, п а д а ю щ и х на различно ориентированные поверхности в атмосфере, выполнены здесь д л я однородной подстилающей поверхности и безоблачной атмосферы. Следует о ж и д а т ь, что при частичной облачности и д л я реальной подстилающей поверхности ориентация приемной поверхности будет о к а з ы в а т ь еще более заметное влияние на приход суммарного потока р а д и а ц и и.

Н а основании полученных результатов вычислений можно сделать вывод, что во многих случаях приход р а д и а ц и и от Земли и атмосферы довольно сложно зависит от ориентации облучаемой поверхности.

Полученные в данной г л а в е результаты еще не позволяют полностью решить поставленную здесь з а д а ч у. Необходимо дополнительно провести аналогичные расчеты д л я р а з л и ч н о ориентированных поверхностей, р а с п о л о ж е н н ы х в атмосфере на разных высотах н а д земной поверхностью. Д л я интерпретации спутниковых измерений уходящего излучения представляет такж е интерес выполнить расчеты потоков р а д и а ц и и д л я узкоугольных приемников радиации.

П р и исследовании теплового б а л а н с а искусственных спутников З е м л и интересно иметь д а н н ы е о потоках излучения от Солнца, Земли и атмосферы на поверхности шара, цилиндра, конуса и других геометрических тел, находящихся на разных высотах в атмосфере и различно ориентированных в пространств^.

Следует еще раз отметить, что проведенные здесь расчеты являются модельными. Почти во всех случаях рассматривалась модель плоскопараллельной атмосферы. Важно оценить, насколько полученные данные будут близки к результатам для сферической атмосферы. То же самое следует сказать и о расчетах, относящихся к условиям частичной облачности. Таким образом, представленные здесь результаты расчетов следует рассматривать как первый этап на пути решения поставленной задачи.

ЛИТЕРАТУРА К главе 1

1. К о н д р а т ь е в К. Я. Лучистый теплообмен в атмосфере. Гидрометеоиздат, 1956.

2. Ф е й г е л ь с о н Е. М. Спектральное отражение радиации облаками. Труды ГГО, вып. 166, 1964..'

3. Н о в о с е л ь ц е в Е. П., Т е р - М а р к а р я н ц Н. Е. Об отражении длинноволновой радиации водной поверхностью. Труды ГГО, вып. 125, 1962.

4. Б р а м с о н М. А., З е л ь м а н о в и ч И. Л., К у л е ш о в а Г. И. Излучательная способность воды в инфракрасной области спектра. Труды ГГО, вып. 152, 1964.

5. М у л л а м а а Ю.-А. Р. Атлас оптических характеристик взволнованной поверхности моря. Изд. АН ЭССР, Ин-т физики и астрономии, Тарту, 1964.

6. Я к у ш е в с к а я К. Е. О влиянии угловой зависимости отражательной способности гладкой водной поверхности на угловое распределение тепловой уходящей радиации. Проблемы физики атмосферы, сб. 4. Изд. ЛГУ, 1966.

7. Н и й л и с к X. Ю. Новая радиационная номограмма. Изд. АН ЭССР, т. X, сер. физ.-мат. и техн. наук, № 4, 1961.

8. Y a m a m o t o Q. and О п i s h i Q. Absorption coefficient of water vapour in the far infrared region. The Science Reports of the Tohoku University, ser. 5, v. I, No. I, 1949.

9. Y a m a m o t o G., S a s a m o r i T. Calculation of the absorption of the 15-micron carbori-dioxide band. The Science Reports of the Tohoku University, ser. 5, v. 10, No. 2, 1958.

10. S a s a m o r i T. The temperature effect on the absorption of the 15-micron carbon-dioxide band. The Science Reports of the Tohoku University, ser. 5, v. 11, No. 3, 1959.

11. W e x l e r R. Satellite observations of infrared radiation. Second SemiAnnual Technical Summary Report. Contract AF 19(604)—5968, 1960.

12. Н и й л и с к X. Ю. О зависимости функции пропускания атмосферы от температуры. Исследования по физике атмосферы, ИФА АН ЭССР, № 4, Тарту, 1963.

13. Н и й л и с к X. Ю. Оценка влияния температурной зависимости функции пропускания атмосферы на результаты расчетов теплового излучения в земной атмосфере. Исследования по физике атмосферы, ИФА АН ЭССР, № 5, Тарту, 1963.

14. К о н д р а т ь е в К. Я., Я к у ш е в с к а я К. Е. Угловое распределение уходящего теплового излучения в различных областях спектра. ЙСЗ, вып.

14, 1962.

15. К о и д р а т ь е в К. Я., Я к у ш е в с к а я К. Е. Угловое распределение тепловой радиации системы Земля—атмосфера в различных областях спектра. Труды ГГО, вып. 166, 1964.

16. К о н д р а т ь е в К. Я., Я к у ш е в с к а я К. Е. К вопросу о спектральном распределении уходящего излучения. Проблемы физики атмосферы, сб. 2.

Изд. ЛГУ, 1963.

17. Я к у ш е в с к а я К. Е. Об угловой зависимости спектрального распределения тепловой уходящей радиации. Проблемы физики атмосферы, сб. 3.

Изд. ЛГУ, 1965.

18. К о н д р а т ь е в К. Я., Н и й л и с к X. Ю. Некоторые результаты теоретических расчетов углового распределения теплового излучения Земли как планеты в реальных условиях Трулы ГГО, вып 166, 1964

19. L o n d o n J. The use of satellite observations for ' atmospheric radiation studies. Archiv fur Metorologie, Geophysik und Bioklimatolopie Ser. В Bd 12, H. 1, 1962..

20. К о п p о в а Л. И., M а л к e в и ч М. С. О тепловом излучении сферической атмосферы. Косм, иссл., т. II, вып. 6, 1964.

21. M c G e e R. A. An analytical infrared radiation model o! the Earth. Appl.

Opt., v. 1, No. 5, 1962.

22. M c G e e R. A. Far infrared radiation model of the Earth. AIAA (American Institute of Aeronautics and Astronautics) Journal, v. 1, No. 9, 1963.

23. H a n e 1 R. А., В a n d e e n W. R., С о n r a t h B. J. The infrared horizon of the planet Earth. J. Atm. Sci., v. 20, No. 2, 1963.

24. W a r k D. Q., Y a m a m o t o G, L i e n e s c h J. H. Methods of estimating infrared flux and surface temperature from meteorological satellites.

J. Atm. Sci., v. 19, No. 5, 1962.

25. W a г к D. Q., A 1 i s h о u s e J., Y a m a m o t o G. Variation of the infrared spectral radiance near the limb of the Earth. Appl. Opt., v. 3, No. 2, 1964.

26. W о e s t m a n J. W. Earth radiation model for infrared horizon sensor applications. Infrared Physics, v. 3, No. 2, 1963.

27. H и й л и с к X. Ю. Об определении интенсивности длинноволновой радиации в атмосфере. Исследования по физике атмосферы, ИФА АН ЭССР, № 3, Тарту, 1962.

28. Я к у ш е в с к а я К. Е. Об одном приближении в расчетах тепловой радиации атмосферы. Вестник ЛГУ, № 10, сер. физики и химии, вып. 1, 1965.

29. G o d s o n W. L. Infrared transmission by water vapour. Part I.. The use of spectroscopic data. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Ser. B, Bd 12, H. 1, 1962.

30. E l s a s s e r W. M., G u l b e r t s o n M. F. Atmospheric radiation tables.

Meteorological Monographs, v. 4, No. 23, 1960.

31. G o o d y R. M. Atmospheric radiation. I. Theoretical Basis. Clarendon Press, Oxford, 1964.

32. К о н д р а т ь е в К. Я. Актинометрия. Гидрометеоиздат, 1965.

' 33. G r y v n a k D. A., S h a w J. H. Study of the total absorption near, 4,7 jx by two samples of CO as their total pressures and CO concentration were independently varied. J. Opt. Soc. Am., v. 52, No. 5, 1962.

34. G o d s o n W. L., Infrared transmission by water vapour. Part II. The use of laboratory data. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Ser. B, Bd 12, H. 2, 1963.

35. К о н д р а т ь е в К. Я., Н и й л и с к X. Ю. О тепловом излучении 9,6 и полосы поглощения озона в атмосфере. Проблемы физики атмосферы, сб. 2. Изд. ЛГУ, J963.

36. W а 1 s h a w С. D. Infrared radiation in the atmosphere. Science Progress, v. XLVII, No. 185, 1959.

37. В u г с h D., H o w a r d J. and W i l l i a m s D. Infrared transmission of synthetic atmospheres. V. Absorption laws for overlapping bands. J. Opt.

Soc. Am., v. 46, No. 6, 1956. •

38. G u t n i c k M. How dry is the sky? J. Geophys. Res., v. 66, No. 9, 1961.

39. М а л к е в и ч M. С., С а м с о н о в Ю. Б., К о п р о в а Л. И. Водяной пар в стратосфере. Усп. физ. наук, т. LXXX, вып. 1, 1963.

40. G u t n i c k М. Mean moisture profiles to 31 km for middle latitudes. Appl.

Opt., v. 1, No. 5, 1962.

41. D o b s o n G. M. B.,^ B r e w e r A. W., H o u g h t o n J. T. The humidity of stratosphere. J. Geophys. Res., v. 67, No. 2, 1962.

42. G u t n i с k M. Reply to preceding discussion. J. Geophys. Res., v. 67, No. 2, 1962.

43. M a s t e r b r o o k H. J. The status of water vapor observations above 20 km and some implications as to the general circulation. Trans. Am.

Geophys. Union, v. 44, No. 4, p. 951, 1963.

44. G u t n i c k M. An estimate of precipitable water along high altitude ray paths. Air Force Surveys in Geophysics, 120, Air Force Cambridge Research Laboratories, Bedford, Mass., 1960.

45. Я к у ш е в с к а я К. E. Вклад земной поверхности, облаков и различных слоев атмосферы в.„уходящее Излучение. Проблемы физики атмосферы, сб. 3. Изд. ЛГУ, 1965,,300

46. Ш е х т е р Ф. Н. К вычислению лучистых потоков тепла в атмосфере.

Труды ГГО, вып. 22, 1950.

47. L o n d o n J. A study of the atmospheric heat balance. Final report. Contract, No. AF 19(122)—165, 1957..

48. Я к у ш е в с к а я К. Е. О сравнении экспериментальных и теоретически рассчитанных значений интенсивности неизотропного теплового излучения атмосферы. Проблемы физики атмосферы, сб. 3. Изд. ЛГУ, 1965.

49. С о n г a t h В. J. Earth scan analog signal relationships in the TIROS radiation experiment and their application to the problem of horizon sensing.

NASA Technical Note D-1341, Goddard Space Flight Center, Greenbelt, Md., 1962.

50. H a n e l R. A., W a r k D. Q. TIROS II radiation experiment and its physical significance. J. Opt. Soc. Am., v. 51, No. 12, 1961.

51. W e x l e r R. Infrared and visual radiation measurements from TIROS III.

Appl. Opt., v. 3. No. 2„ 1964.

52. В a n d e e n W. R., С о n r a t h B. J., H a n e l R. A. Experimental confirmation from the TIROS VII meteorological satellite of the theoretically calculated radiance of the Earth within the 15-micron band of carbon dioxide.

J. Atm. Sci., v. 20, No. 6, 1963.

53. B u r n J. W. The application of the spectral and spatial characteristics of the Earth's infrared horizon to horizon scanners. IEEE (Institute of Electrical and Electronics Engineers) Transactions on Aerospace, v. AS-1, No. 2, 1963.

54. B l o c k L. C., Z а с h о r A. S. Inflight satellite measurements of infrared spectral radiance of the Earth. Appl. Opt., v. 3, No. 2, 1964.

55. А в е р ь я н о в И. П., К а с а т к и н А. М., Л и в е н ц о в А. В., М а р к о в М. Н., М е р с о н Я. И., Ш а м и л е в М. Р., Ш е р в и н с к и й В. Е.

Измерение с высотной геофизической автоматической станции теплового излучения Земли в космическое пространство во время полного солнечного затмения 15 февраля 1961 г. ИСЗ, вып. 14, 1962.

56. Л и в е н ц о в А. В., М а р к о в М. Я., М е р с о н Я. И., Ш а м и л е в М. Р. Экспериментальное определение уходящего излучения- Земли в космическое пространство во время полного солнечного затмения, с высотных геофизических ракет. Сб. «Актинометрия и оптика атмосферы».

Изд-во «Наука», 1964.

57. М и г с r a y D. G., B r o o k s J. N„ S i b l e N. J., W e s t d a l H. C. Optical measurements from high altitude balloons. Appl. Opt., v. 1, No. 2, 1962.

58. М а р к о в M. H., М е р с о н Я. И., Ш а м и л е в М. Р. Исследование поля теплового излучения стратосферы и тропосферы в инфракрасной области спектра с геофизических аэростатов. Косм, иссл., т. I, вып. 2, 1963.

59. М а р к о в М. Н., М е р с о н Я- И., Ш а м и л е в М. Р. Исследование углового распределения инфракрасного излучения Земли и атмосферы с геофизических аэростатов. Сб. «Актинометрия и оптика атмосферы». Изд-во «Наука», 1964.

60. М а р к о в М. Н., M e р с о н Я. И., Ш а м и л е в М. Р. Сезонные вариации поля теплового излучения Земли и атмосферы в инфракрасной области спектра (по измерениям с геофизических аэростатов в 1962— 1963 гг.). Косм, иссл., т. III, вып. 2, 1965.

61. Л е б е д и н с к и й А. И., Г л о в а ц к и й Д. Н., - Т у л у п о в В. И., X л оп о в Б. В., Ф о м и ч е в А. А., Ш у с т е р Г. И. Инфракрасная спектрофотометрия теплового излучения Земли. Сб. «Исследования космического пространства». Изд-во «Наука»; 1965.

02. М а р к о в М. Н., М е р с о н Я. И., III а м и л е в М. Р. Исследование углового распределения излучения Земли и земной атмосферы с геофизических ракет и аэростатов. Сб. «Исследования космического пространства».

Изд-во «Наука», 1965.

63. Б а ж у л и н П.. А., К а р т а ш е в А. В., М а р к о в М. Н. Угловое и спектральное распределение излучения Земли в инфракрасной области 21 Зак. 359 спектра. Сб. «Исследования космического пространства». Изд-во «Наука», 1965.

64. М а р к о в М, Н., М е р с о н Я. И., Ш а м и л е в М. Р. Слои. верхней атмосферы, излучающие в инфракрасной области спектра. Сб. «Исследования космического пространства». Изд-во-«Наука», 1965.

65. A d е 1 A. The atmospheric, windows at 6,3р. and 16 to 24 [x. Infrared Physics, v. 2, pp. 31—35, 1962.

66. Bandeen W. R., C o n r a t h B. J., N o r d b e r g W., T h o m p s o n H, P. A radiation view of hurricane Anna from the TIROS III meteorological satellite. Proceedings of the First Internationa] Symposium on Rocket and Satellite Meteorology. Amsterdam, 1963.

67. R a s c h k e E., T a n n h a u s e r J. Investigation of atmospheric properties based upon evaluation of infrared radiation data obtained from the TIROS satellite. Part II. Influence of minor constituents on the outgoing radiation.

Final report, NASA Research Grant, NsG-305, May, 1965.

68. Л и в е н ц о в А. В., М а р к о в M. H., М е р с о н Я. И., LU а м и л е в М. Р.

Исследование углового распределения теплового излучения Земли в космическое пространство при пуске геофизической ракеты 27 августа 1958 г.

Косм, иссл., т. IV, вып. 4, 1966.

69. G i г а г d A. Analyse experimentale du contraste infrarouge entre la Terre et l'espace. Office National d'Etudes et de Recherches Aerospatiales, tire a part: T-. P. № 350, 1966.

70. Б а ж у л и н П. А., К а р т а ш е в А. В., М а р к о в М. Н. Исследование углового и спектрального распределения излучения Земли в инфракрасной области спектра с ИСЗ «Космос-45». Косм, иссл., т. IV, вып. 4, 1966.

71. H a r n p s o n J. Photolysis of wet ozone and its significance to atmospheric heating of the ozone layer. Int. Coun. Aeronaut. Sci. 3rd Cong. Stockholm—1962. Wash., Zdn, 1964.

72. H o u g h t o n Y. T. Infrared emission from stratosphere and mesosphere.

Proc. Roy. Soc., ser. A, y. 288, No. 1415, 1965.

К главе 2

1. Р о з е н б е р г Г. В. Рассеяние света в земной атмосфере. Усп. физ.

наук, т. 71, вып. 2, 1960.

2. S h u r. c l i f f W, A. Polarized light. Harvard Univ. Press, Cambr.— Mass 1962

3. S h u r c l i f f W. A., B a l l a r d S. S._ Polarized light. Van Nostrand, Princeton, Now Jersey, 1964.

4. В а н д е Х ю л с т Г. Рассеяние света малыми частицами. Изд-во иностр.

лит., М„ 1961.

5. Ч а н д р а с е к а р С. Перенос лучистой энергии. Изд-во иностр. лит., М„ 1953.

6. Г е р м.о г е н о в а Т. А. О влиянии поляризации на распределение интенсивности рассеянного излучения. Изв. АН СССР, сер. геофиз., № 6, 1962.

7. S t o k e s G. On tl\e composition and resolution of streams of polarized light, from different sources. Trans. Cambr. Phil. Soc., v. 9, p. 399, 1852.

8. P о з e н б e р.гчГ. В. Вектор-параметр Стокса. УФН, т. 56, вып. 1. 1955.

9. С о б о л е в В..*В. Перенос лучистой энергии в атмосферах звезд и планет. Гостехиздат, М., 1956.

10. М а р ч у к Г. И. Методы расчета ядерных реакторов. Госатомиздат, 1961.

11. B u s b r i d g e I. W. The mathematics of radiative transfer. Cambridge Univ. Press, 1960.

12. K o u r g a n o f f V., B u s b r i d g e I. W. Basic methods in transfer problems. Clarendon Press, Oxford, 1952. i,302

13. P r e i ' s e n d o r f e r R. W., Radiative transfer on discrete spaces. Pergamon Press, Oxford, 1965.

14. С а в о с т ь я н о в а M. В. Спектральный состав дневного света при фотосъемке. Изв. АН СССР, сер. геогр. и геофиз., № 4, 1942.

15. Ш и ф р и н К. С., А в а с т е О. А. Потоки коротковолновой радиации в безоблачной атмосфере. Исследования по физике атмосферы, ИФА АН ЭССР, № 2, 1960.

16. Ш и ф р и н К. С., Ш у б о в а Г. Л. Изменчивость вертикальной прозрачности, Труды ГГО, вып. 170, 1965.

17. Б а л а н о в с к и й И. А. Астрофизика. Под. ред. Б. М. Герасимовича.

Астрофотометрия, гл. 3. ОНТИ, 1934.

18. Ю д а л е в и ч Ф. Ф. О многократном рассеянии в инфракрасной области спектра. Изв. АН СССР, сер. геофиз., № 7, 1956.

19. А в а с т е О. А. Интенсивности и потоки уходящей радиации при сферической Земле в близкой инфракрасной области спектра. Сб. «Актинометрия и атмосферная оптика». Изд-во «Наука», М., 1964.

20. J o h n s o n F. S. The solar constant. J. Meteorol., v. 11, No. 6, 1954.

21. Ф е й г е л ь с о н E. M. Радиационные процессы в слоистообразных облаках. Изд-во «Наука», М., 1964.

22. S e k e r a Z. Recent developments in the study of the polarization of sky light. Advances in Geophysics. Ed. by L a n d s b e r g H. E., v. 3, p. 43— 104, Acad. Press, N. Y„ 1956.

23. L o r d R a y l e i g h (The Hon. J. W. Strutt). On the scattering of light by small particles. Phil. Mag., v. 14, ser. 4, p. 447—454, 1871.

24. С о u 1 s о n K. L., D a v e J. V., S e k e r a Z. Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering. Univ. of California Press, Berkeley — Los Angeles, 1960.

25. C h a n d r a s e k h a r S., E l b e r t D. D. The illumination and polarization of the sunlit sky on Rayleigh scattering. Trans. Am. Phil. Soc., New series, v. 44, pt 6, 1954.

26. C o u l s o n K. L. Characteristics of the radiation emerging from the top of a Rayleigh atmosphere. I. Intensity and polarization. II. Total upward flux and albedo. Planet. Space Sci., v. 1, No. 4, 1959.

27. F г a s e r R. S. Apparent contrasts of objects on the Earth's surface as seen from above the Earth's atmosphere. J. Opt. Soc. Am., v. 54, No. 3, 1964.

28. H a m m a d A., C h a p m a n S. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition. Phil.

Mag., ser. 7, v. 28, No. 186, 1939.

29. H a m m a d A. The primary and secondary scattering of sunlight in planestratified atmosphere of uniform composition. Astrophys. J., v. 108, No. 3, 1948.

30. V a n d e H u 1 s t H. C. Scattering in a planetary atmosphere. Astrophys.

J., v. 107, No. 2, 1948.

31. W a l t o n O. F. Atmosphere scattering and absorption of ultraviolet sunlight. Phil. Mag., ser. 7, v. 46, No. 374, 1955.

32. G 01 s t e i n J. S. The infrared reflectivity of a planetary atmosphere.

Astrophys. J., v. 132, No. 2, 1960.

33. V a n d e H u l s t H. C. I r v i n e W. M. General report on radiation transfer in planets: scattering in model planetary atmospheres. Mem.

Soc. Roy. Sci. Liege, ser. 5, v. 7; No. 1, 1963.

34. I r v i n e. W. M. The formation of absorption bands and the distribution of photon optical paths in scattering atmosphere. Bull. Astr. Inst. Netherlands, v. 17, No. 4, 1964.

35. Р о м а н о в а Л. M. Предельные случаи функции распределения по пробегам фотонов, выходящих из толстого светорассеивающего слоя. Изв.

АН СССР, серия физики атмосферы и океана, т. 1, № 6, 1965.

36. D a v e J. V. Importance of higher order scattering in a molecular atmosphere. J. Opt. Soc. Am., v. 54, No. 3, 1964.

21*

37. D e В а г у E., B u l l r i c h R. Effects of higher order scattering in a molecular atmosphere. J. Opt. Soc. Am., v. 54, No. 12, 1964.

38. F r i e d m a n R. M„ R a w c l i f f e R. D„ M e l o y С. E. Radiance of the upper atmosphere in the middle ultraviolet. J. Geophys. Soc., v. 68, No. 24, 1963.

39. G r e e n A. E. S. Attenuation by ozone and the Earth's albedo in the middle ultraviolet. Appl. Opt., v. 3, No. 2, 1964.

40. S e k e r a Z., D a v e J. V. Determination of the vertical distribution of ozone from the measurement of diffusely reflected ultraviolet solar radiation. Planet. Space Sci., v. 5, No. 2, 1961.

41. Г e p м о г e н о в а Т. A., M а л к e в и ч М. С. Поле отраженной радиации земли в полосе поглощения озона 0,20—0,34 р. 1. Спектральное распределение. Изв. АН СССР, серия физики атмосферы и океана, т. 1, № 9, 1965.

42. Е 11 е г m a n L. A representative vertical ozone distribution for atmospheric transmission studies. Appl. Opt., v. 3, No. 5, 1964.

43. T o h m a t s u T. The Schuman-Runge day airglow. Rep. of Ionosphere and Space Res., Japan, v. 17, No. 3, 1963.

44. J о h n s о n E. S., P u г с e 11 L. D. Direct measurement of the vertical distribution of atmospheric ozone to 70km altitude. J. Geophys. Res., v. 57, No. 2, 1952.

45. Г е р м о г е н о в а Т. А. О характере решения уравнения переноса для плоского слоя. Журн. вычисл. математики и математической физики, т. 1, № 6, 1961.

46. J u n g e С. Е. Sulphur in the atmosphere. J. Geophys. Res., v. 65, No. 1, 1960.

47. J u n g e С. E., С h a g n о n C. W., M a n s o n J. E. A worldwide stratospheric aerosol layer. Science, v. 133, No. 3463, 1961.

48. С h a g n о n C. W., J u n g e С. E. The vertical distribution of submicron particles in the stratosphere. J. Meteorol., v. 18, No. 6, 1961.

49. J u n g e С. E., M a n s о n J. E. Stratospheric aerosol studies. J. Geophys.

Res., v. 66, No. 7, 1961.

50. B i g g E. K., M i l e s С. Т., H e f f e r n a n K. J. Stratospheric ice nuclei.

J. Meteorol., v. 18, No. 6, 1961.

51. J u n g e С. E. Sulphur in the atmosphere. J. Geophys. Res., v. 68, No. 13, 1963.

52. R о s s 1 e r F., V a s s y E. Lumiere solaire difusee par l'atmosphere mesuree a bord d'une fusee Veronique: distribution verticale des aerosols.

Compt. Rend., t. 254, No. 11, 1962.

53. F r i e n d J. P., S h e r w o o d R. D„ S a b e l s В. E. High altitude sampling program stratospheric particle studies. Bull. Am. Meteorol. Soc., v. 45, No. 1, 1964.

54. Р о з е н б е р г Г. В., Н и к о л а е в а - Т е р е ш к о в а ' В. В. Стратосферный аэрозоль. по измерениям с космического корабля. Изв. АН СССР, Физика атмосферы и океана. Изв. АН СССР, т, I, № 4, 1965.

55. Ф а р а п о н о в а Г. П. Измерение ослабления солнечного света в свободной атмосфере. Труды ЦАО, вып. 32, 1959.

Б6. Ш и ф р и н К. С., М и н и н И. Н. К теории негоризонтальной видимости. Труды ГГО, вып. 68, 1957.

57. Р е n n d о г f R. The vertical distribution of Mie particles in the troposphere. J. Meteorol., v. 11, No. 3, 1954.

58. S с h m о 1 i n s k у F. Die Wellenlangenabhangikeit der Sichtweite und des Koeffizienten der Dunstextinktion. Meteorol. Zeitschr., v. 61, No. 6, 1944.

59. F о i t z i k L., Z с h a e с k H. Messungen der spektralen Zerstreuungsfunktion bodennaher Luft bei guter Sicht, Dunst und Nebel. Zs. f. Meteorol.-, v. 7, No. 1, 1953.

60. С о б о л е в В. В. Приближенное решение задачи о рассеянии света в среде с произвольной индикатрисой рассеяния. Астр, ж., т. 20, № 5—6, 1943.

,304

61. Ш и ф р и н К. С., П я т о в с к а я Н. П. Таблицы наклонной дальности видимости и яркости дневного неба. Гидрометеоиздат, Л., 1959.

62. А в а с т е О. А., А т р о ш е н к о В. С. О точности метода В. В. Соболева. Изв. АН СССР, сер. геогр., № 3, 1960.

63. Ф е й г е л ь с о н Е. М., М а л к е в и ч М. С. и др. Расчет яркости света в атмосфере при анизотропном рассеянии, ч. I. Труды ИФА АН СССР, № 1, 1958.

64. А т р о ш е н к о В. С., Г л а з о в а К. С., М а л к е в и ч М. С., Ф е й г е л ь с о н Е. М. Расчет яркости света в атмосфере при анизотропном рассеянии. Часть 2. Труды ИФА АН СССР, № 3, 1962.

65. М а л к е в и ч М. С. Угловое и спектральное распределение радиации, отраженной землей в мировое пространство. ИСЗ, вып. 14, 1962.

66. Ш и ф р и н К. С., К о л о м и й ц о в В. Ю., П я т о в с к а я Н. П. Определение потока уходящей коротковолновой радиации с помощью искусственного спутника Земли. Труды ГГО, вып. 166, 1964.

67. А в а с т е О., М у л л а м а а Ю.-А., III и ф р и н К. С. Поле уходящей коротковолновой радиации в видимой и близкой инфракрасной областях спектра при неортотропной подстилающей поверхности. Исследования по физике атмосферы. ИФА АН ЭССР, № 6, 1964.

68. С h и С. М., L е а с о с k J. A., C h e n J. С., C h u r c h i l l S., W. Numerical solutions for multiple anisotropic scattering. ICES Electromagnetic Scattering, 567—582, Pergamon Press, N. Y., 1963,

69. D e i r m e n d j i a n D. Exact theoretical scattering and polarization properties of polydispersed clouds. J. Geophys. Res., v. 67,' No. 4, 1962.

70. D e i r m e n d j i a n D. Scattering and polarization properties of polydispersed suspensions with partial absorption. ICES Electromagnetic Scattering, 171—189, Pergamon Press, N. Y., 1963.

71. С h a n d r a s e к h a r S. The radiative equlibrium of extended stellar atmospheres. Monthly Notices Roy. Astro. Soc. London, v. 94, No. 5, 1934.

72. К о s i r e v N. A. Radiative equilibrium of the extended photosphere.

Monthly Notices Roy. Astro. Soc. London, v. 94, No. 5, 1934.

73. L e n o b l e J., S e k e r a Z. Equation of radiative transfer in a planetary spherical atmosphere. Proc. Nat. Acad. Sci. U. S. A., v. 47, No. 3, 1961.

74. D e i r m e n d j i a n D. The optical thickness of the molecular atmosphere.

Arch. Meteorol. Geophys. u. Bioklimatol., Ser. B, v. 6, No. 4, 1955.

75. С a p m a n S. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Pt II. Grazing incidence. Proc. Phys. Soc. London, v. 43, pt 5, No. 240, 1931.

76. C h a p m a n S. Note on a grazing incidence integral Ch (x, X) for monochromatic absorption in an exponential atmosphere. Proc. Phys. Soc. London, v. 66, pt 8, No. 404 B, 1953.

77. W i l k e s M. V. A table of Chapman's grazing incidence integral Ch (x, X). Proc. Phys. Soc. London, ser. B, v. 67, pt 4, No. 412 B, 1954.

78. F i t z m a u e r i c e J. A. Simplification of the Cha-pman function for atmosphere attenuation. Appl. Opt., v. 3, No. 5, 1964.

79. S e n К. K..A note on the problem of introducing sphericity correction to conservative scattering stellar atmosphere model. Indian J. Phys., v. 35, No. 3, 1961.

80. С о б о л е в В. В., М и н и н И. Н. Рассеяние света в сферической атмосфере. I. ИСЗ, вып. 14, 1962.

81. М и н и н И. Н., С о б о л е в В. В. Рассеяние света в сферической атмосфере. II. Косм, иссл., т. 1, № 2, 1963,

82. М и н и н И. Н., С о б о л е в В. В. Рассеяние света в сферической атмосфере. III. Косм, иссл., т. 2, № 4, 1965.

83. М и н и н И. Н., С о б о л е а В. В. К теории рассеяния света в планетных атмосферах. Астр, ж., т. 40, № 3, 1963.

84. А в а с т е О. А. Метод расчета интенсивностей и потоков уходящего излучения при сферической Земле в близкой инфракрасной области спектра. Труды ГТО, вып. 166, 1964.

,305

85. А в а с т е О. А. Результаты расчетов интенсивностей и потоков уходящего излучения при сферической Земле в близкой инфракрасной области спектра. Труды ГГО, вып. 166, 1964.

86. В u l l r i c h К. Scattered radiation in the atmosphere and the natural aerosol. Adv. in Geophys., v. 10, 1964.

87. F r i t z S. Solar radiation in the lower atmosphere. Proc. Nat. Acad Sci., Wash., v. 43, No. 1, 1957.

88. M i 1 e у A. H., С u 11 i n g t о n E. H., В e d i n g e r J. F. Day-sky brightness measured by rocketborne photoelectrical photometers. Trans. Am.

Geophys. Union, v. 34, No. 5, 1953.

89. М о р о з о в В. M. Измерение яркости дневного неба фотоэлектрическими фотометрами, поднимаемыми на ракетах. Усп. физ. наук, т. 53, № 1, 1954.

90. D i г m h i г n J. Zur spektralen Verteilung der Reflexion natiirlichen Medien. Wetter und Leben, v. 9, No. 3—5, 1957.

91. F r i t z S. Absorption and scattering of solar energy in clouds of «lar?e water drops». Pt II. J. Meteorol., v. 15, No. 1, 1958.

92. D u n 11 e у S. О., В о i 1 e a u A., G o r d o n J., H a r r i s J. L. Maps of sky luminance at various altitudes. Geoph. Res. Directorate, Res. Notes, No. 46, pp. 180—186, 1960.

93. M u г с г а у D. G., B r o o k s J. N„ S i b 1 e N. J., W e s t d a 1 С h. Infrared background radiation as measured from 85,000 ft. University of Denver.

Contract AF (616)—5199, special report, No. 1, 1959.

94. A s t e n h e i m e r R. W., D e W a a r d R., J a c k s o n E. A. Infrared radiometric instruments on TIROS II. J. Opt. Soc. Am., v. 51, No. 12, 1961.

95. B a n d e e n W- R-, H a n e l R. A., L i c h t J., S t a m p f l R. A., S t r o u d W. G. Infrared and reflected solar radiation measurements from the TIROS II meteorological satellite. J. Geophys. Res., v. 66, No. 10, 1961.

96. M o l l e r F. Einige vorlaufige Ausvertungen der Strahlungsmessung von TIROS II. Arch. Met. Geoph. Biokl., Ser. B, v. 12, No. 1, 1961.

97. H a n e l R. A., S t r o u d W. G. The TIROS II radiation experiment.

Tellus, v. 13, No. 4, 1961.

98. N о r d b e r g W„ B a n d e e n W. R., С о n r a t h B. J., K u n d e V., P e r s a n о I. Preliminary results of radiation measurements from the TIROS III meteorological satellite. J. Atm. Sci., v. 19, No. 1, 1962.

99. К о н д р а т ь е в К. Я., Ф е д о р о в а М. П. Опыт обработки и анализа некоторых данных по измерению составляющих радиационного баланса системы земная поверхность—атмосфера на спутнике «Тайрос-П». ИСЗ, вып. 14, 1962.

100. Б о р и с е н к о в Е. П., Д о р о н и н Ю. П., К о н д р а т ь е в К. Я. Структурные характеристики поля измерения Земли как планеты. Косм, иссл., т. I, № 1, 1963.

101. Б о р и с е н к о в Е. П., Д о р о н и н Ю. П., К о н д р а т ь е в К. Я. Структурные характеристики полей уходящей радиации по данным искусственных спутников Земли «Тайрос-П» и «Тайрос-III» и их интерпретация.

Косм, иссл., т. III, № 3, 1965.

102. B a n d Н. Е., B l o c k L. С. Spectral radiance measurements of the Earth from high altitudes. Appl. Opt., v. 4, No. 3, 1965.

103. E i s n e r L., B e l l E. E., Y o u n g J., O e t j e n R. A. Spectral radiance of sky and terrain at wavelong between 1 and 20 p. Pt III. Terrain Measurements. J. Opt. Soc. Am., v. 52, No. 2, 1962.

104. S e k e r a Z. Radiative transfer in a planetary atmosphere with imperfect scattering, R-413-PR. A report prepared for U. S. Air Force project RAND.

Contract, No. AF 49 (638)—700, June, 1963.

105. M o i l e r F. The influence of aerosols on atmospheric radiation fluxes.

New York University, Department of Meteorology and Oceanography, Geophysical Sciences Laboratory Report. No. 65—5. Summary of the Conference on the optical properties of aerosols, 15—17 Oct. 1964, Onchiota Conference Center, Sterling Forest, Tuxedo, New York, July, 1965.

106. R o b i n s o n G. D. Absorption of solar radiation by atmospheric aerosol, as revealed by measurements at the ground. Arch. Met. Geoph. Biokl., Bdl2, No. 1, 1963.

107. S e к i h a г а К., M u r a i K. On the absorption properties of atmospheric dust particles as considered from various kinds of ground-level observations. I. U. G. G. Monograph, No. 28, 1965.

108. L e u p о 11 A. Determination of aerosol absorption from spectroscopic sky measurements (0,5 to 2,5 ц). I. U. G. G. Monograph, No. 28, 1965.



Pages:   || 2 | 3 | 4 |
Похожие работы:

«ПРОТОКОЛ Заседания Главной спортивной судейской коллегии 44-х международных спортивных соревнований по радиосвязи на КВ телеграфом "Мемориал им. Э.Т. Кренкеля RAEM" 2015 г. 29 апреля 2016 г. г. Новосибирск, г. Уфа г. Братск Главная спо...»

«Зарегистрировано в Министерстве юстиции Кыргызской Республики 2 сентября 2003 года. Регистрационный номер 94-03 Приложение к приказу Министерства внутренних дел Кыргызской Республики от 20 августа 2003 года N 389 ИНСТРУКЦИЯ для с...»

«Ю.Н. Сундуков АННОТИРОВАННЫМ КАТАЛОГ ЖУЖЕЛИЦ (COLEOPTERA: CARABOIDEA) СИХОТЭ-АЛИНЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ Б И О Л О Г О -П О Ч В Е Н Н Ы Й И Н С Т И Т У Т ДАЛЬНЕВОСТОЧНОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ Б...»

«ДОГОВОР № AGREEMENT No. FOR PROVISION OF SERVICES О ПРЕДОСТАВЛЕНИИ УСЛУГ regarding training in “Day trader” currency rate по обучению системе прогнозирования курсов валютных рынков "Дневной трейдер" forecasting system Dnepropetrovsk, Ukraine г. Днепропетровск, Украина Date:2015 year Дата:2015 года This agreement is signed by and betwee...»

«Технічні науки  11. Дослідження функції дихання [Електронний ресурс] / Ukrainian Context Optimizer. – Режим доступа: http://intranet.tdmu.edu.te.ua/data/cd/tuberkulez/html/Rozdil08/r08.html.12. Спирометрия в оценке нарушений функции дыхательно...»

«© М.М. Алиев, Н.Г. Каримова, С.Р. Гилязова, 2015 УДК 539.376 М.М. Алиев, Н.Г. Каримова, С.Р. Гилязова НЕЛИНЕЙНЫЙ ВАРИАНТ КРИТЕРИЯ КУЛОНА-МОРА Рассмотрен критерий прочности Баландина и Парчевского-Шашенко. Результаты приведенных в статье теоретических исследований позволи...»

«Научный вестник НГТУ. 2006. № 2(23) УДК 62-83: 531.3 Исследование распределений статистик, используемых для проверки гипотез о равенстве дисперсий при законах ошибок наблюдений, отличных от нормального* Б.Ю. ЛЕМЕШКО, В.М. ПОНОМАРЕНКО Методами статистического моделирования исследуются расп...»

«588 Воздушные армии – оперативные объединения ВВС Красной Армии, предназначавшиеся для массированной поддержки боевых действий войск фронтов и проведения воздушных операций. Воздушные армии были созданы приказом Наркома обороны в мае – ноябре 1942 г. на базе авиации фронтов и общевойсковых армий. Армии входили в сос...»

«Зарегистрировано _ _ 200 _ г. ФСФР России (указывается наименование регистрирующего органа) (подпись уполномоченного лица) (печать регистрирующего органа) ОТЧЕТ ОБ ИТОГАХ ВЫПУСКА (ДОПОЛНИТЕЛЬНОГО ВЫПУСКА) ЦЕННЫХ...»

«Руководство по эксплуатации сетевого цифрового регистратора VSR-0450L Версия 2.0 Перед использованием данной машины, убедитесь прочитать все меры предосторожности и инструкции по эксплуатации и сохранит...»

«Порок курения есть греховная привычка "Все мне позволительно, но не все на пользу; все мне позволительно, но ничто не должно обладать мною." (Кор. 6,12) Многие не знают или не помнят слов Господа Иисуса Христа: ".всякий, делающий грех, есть раб греха" (Ин. 8:34). Пока не согрешил челов...»

«БОТАНИКА НИЗШИЕ РАСТЕНИЯ СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. Кто такие низшие растения?2. Системы и классификации органического мира и положение в них низших растений 3. Происхождение низших растений 4. Общее строение клеток низших растений. Митоз и цитокинез.Эукариотные клетки Прокариотные клетки ВОДОРОСЛИ 5...»

«Верхнемодулярные элементы реш тки многообразий полугрупп. II е Б. М. ВЕРНИКОВ Уральский государственный университет e-mail: Boris.Vernikov@usu.ru УДК 512.532 Ключевые слова: полугруппа, многообразие, решётка, верхнемодулярный элемент решётки. Аннотация Многообразие полугрупп называется многообразие...»

«Беляева Е. Р., Беловодская Н. А.ИНДИВИДУАЛЬНОСТЬ И СПЕЦИФИКА УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ Адрес статьи: www.gramota.net/materials/1/2007/1/15.html Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу. Источник Альмана...»

«ДОЛЬМЕНЫ И БОГИНЯ КАЛИН В.В. Косолапов Краевед-исследователь, член КО РОИИ, г. Геленджик, Россия Древние охотники палеолита поклонялись хозяину зверей в образе главного хищника своего региона. В ностратическом языке [1], составленном интерлингвистом Старостиным С.А., буквосочетание –bHer озна...»

«Рождество Христово (католическое) Рождество Христово – один из важнейших христианских праздников. Католики в Западной Европе, Северной и Южной Америке, Австралии, в некоторых странах Африки и Азии отмечают его 25 декабря. Рождество – самый торжественный в католицизме праздник. Содержание праздника – легенда о рождении Девой Марией Сына Божьег...»

«Российская Академия наук Музей антропологии и этнографии им. Петра Великого (Кунсткамера) РАН ФОЛЬКЛОР И ЭТНОГРАФИЯ К девяностолетию со дня рождения К. В. Чистова Санкт-Петербург Электронная библиотека Музея...»

«МИНИСТЕРСТВО ВНУТРЕННИХ ДЕЛ РОССИЙСКОЙ ФЕДЕРАЦИИ Центр оперативного руководства деятельностью вневедомственной охраны РЕКОМЕНДАЦИИ ВЫБОР И ПРИМЕНЕНИЕ СИСТЕМ ОХРАННЫХ ТЕЛЕВИЗИОННЫХ Р 78.36.002-2010 ...»

«РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ                 Единая система S-20 Расширенный комплект ПО ОГЛАВЛЕНИЕ  ОБЩИЕ СВЕДЕНИЯ PERCO-SN01 "БАЗОВЫЙ КОМПЛЕКТ ПО" PERCO-SM01 "АДМИНИСТРАТОР" PERCO-SM09 "ВИДЕОИДЕНТИФИКАЦИЯ" PERCO-SM08 "МОНИТОРИНГ" PERCO-SM12 "ВИДЕОНАБЛЮДЕНИЕ" PERCO-SM...»

«алкоголь Глобальная стратегия сокращения вредного употребления алкоголя Глобальная стратегия сокращения вредного употребления алкоголя WHO Library Cataloguing-in-Publication Data Global strategy to reduce the harmful use of alcohol.1.Alcohol drinking adverse effects. 2.Social control methods. 3.Alcoholism prevention a...»

«Перевод с армянского ПРАВИЛА ПРЕДОСТАВЛЕНИЯ БРОКЕРСКИХ УСЛУГ НА РЫНКЕ ЦЕННЫХ БУМАГ г. Ереван СОДЕРЖАНИЕ 1. ОБЩИЕ ПОЛОЖЕНИЯ 2. ПОНЯТИЯ И ТЕРМИНЫ 3. ПРЕДОСТАВЛЯЕМАЯ КЛИЕНТАМ ИНФОРМАЦИЯ 4. ОТКРЫТИЕ БРОКЕРСКОГО СЧЕТА И ЗАКЛЮЧЕНИЕ ДОГОВОРА.5 5. ФОРМА ЗАЯВОК И...»

«        Внесение изменений в Приложение 7 Международных медико-санитарных правил (2005 г.) (желтая лихорадка):   Срок защиты, обеспечиваемый вакцинацией против желтой лихорадки, и срок действия соответствующих свидетельств о вакцинации продлены до всего сро...»








 
2017 www.doc.knigi-x.ru - «Бесплатная электронная библиотека - различные документы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.